• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Models and algorithms for the capacitated location-routing problem

Contardo, Claudio 07 1900 (has links)
Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48]. / The capacitated location-routing problem (CLRP) arises as a key problem in the design of distribution networks. It generalizes both the capacitated facility location problem (CFLP) and the multiple depot vehicle routing problem (MDVRP), the first by considering additional routing decisions and the second by adding the location decision variables. In this thesis we use different mathematical programming tools to develop and specialize new models and algorithms for solving the CLRP. In Chapter 3, three new models are presented for the CLRP based on vehicle-flow and commodity-flow formulations, all of which are shown to dominate, in terms of the linear relaxation lower bound, the original two-index vehicle-flow formulation [19]. Known valid inequalities are complemented with some new ones and included using separation algorithms that in many cases generalize extisting ones found in the literature. Computational experiments suggest that flow models can be efficient for dealing with small or medium size instances of the CLRP (50 customers or less). In Chapter 4, a new branch-and-cut-and-price exact algorithm is introduced for the CLRP based on a set-partitioning formulation. The pricing problem is a shortest path problem with resource constraints (SPPRC). In particular, we consider a relaxation of such problem in which routes are allowed to contain cycles of length three or more. This is complemented with the development of new valid inequalities that are shown to be effective for closing the optimality gap as well as to restrict the appearance of cycles. Computational experience supports the fact that this method is now the best exact method for the CLRP. In Chapter 5, we introduce a new metaheuristic with the aim of finding good quality solutions in short or moderate computing times. First, a bundle of good solutions is generated with the help of a greedy randomized adaptive search procedure (GRASP). Following this, a blending procedure is applied with the aim of producing a better upper bound as a combination of all the others in the bundle. An iterative destroy-and-repair method is then applied using a location-reallocation model that generalizes the reallocation model due to de Franceschi et al. [48].
2

The Multi-product Location-Routing Problem with Pickup and Delivery / Problèmes de tournées de véhicules avec des contraintes de localisation et d'allocation

Rahmani, Younes 11 December 2015 (has links)
Dans les problèmes de localisation-routage classiques (LRP), il s'agit de combiner des décisions stratégiques liées aux choix des sites à ouvrir (centres de traitement) avec des décisions tactiques et opérationnelles liées à l'affectation des clients aux sites sélectionnés et a la confection des tournées associées. Cette thèse propose de nouveaux modèles de localisation-routage permettant de résoudre des problématiques issues de réseaux logistiques, devenus aujourd'hui de plus en plus complexes vu la nécessité de mutualisation de ressources pour intégrer des contraintes de développement durable et des prix de carburants qui semblent augmenter de manière irrémédiable. Plus précisément, trois aspects ont été intégrés pour généraliser les modèles LRP classiques de la littérature : 1) l'aspect pickup and delivery, 2) l'aspect multi-produits, et 3) la possibilité de visiter un ou plusieurs centres de traitement dans une tournée donnée. Nous avons étudié deux schémas logistiques, qui ont donné lieu à deux nouveaux modèles de localisation et de routage, le MPLRP-PD (LRP with multi-product and pickup and delivery), qui peut être vu comme une extension des problèmes de tournées de véhicules avec collecte et livraison, intégrant une décision tactique liée à la localisation des centres de traitement (noeud avec collecte et livraison) dans un réseau de distribution à un seul échelon, et le 2E-MPLRP-PD (Two-echelon LRP with multi-product and pickup and delivery) qui est une généralisation du LRP à deux échelons avec les contraintes citées plus-haut. Ces deux modèles ont été formalisés par des programmes linéaires en variables mixtes (MIP). Des techniques de résolution, basées sur des méthodes de type heuristique, clustering, métaheuristique, ont été proposées pour résoudre le MPLRP-PD et le 2E-MPLRP-PD. Les jeux d'essais de la littérature ont été généralisés pour tester et valider les algorithmes proposés / In the framework of Location-Routing Problem (LRP), the main idea is to combine strategic decisions related to the choice of processing centers with tactical and operational decisions related to the allocation of customers to selected processing centers and computing the associated routes. This thesis proposes a new location-routing model to solve problems which are coming from logistics networks, that became nowadays increasingly complex due to the need of resources sharing, in order to integrate the constraints of sustainable development and fuels price, which is increasing irreversibly. More precisely, three aspects have been integrated to generalize the classical LRP models already existed in the literature: 1) pickup and delivery aspect, 2) multi-product aspect, and 3) the possibility to use the processing centers as intermediate facilities in routes. We studied two logistics schemes gives us two new location-routing models: (i) MPLRP-PD (Multi-product LRP with pickup and delivery), which can be viewed as an extension of the vehicle routing problem with pick-up and delivery, including a tactical decision related to the location of processing centers (node with pick-up and delivery), and (ii) 2E-MPLRP-PD (Two-echelon multi-product LRP with pickup and delivery), which is a generalization of the two-echelon LRP. Both models were formalized by mixed integer linear programming (MIP). Solving techniques, based on heuristic methods, clustering approach and meta-heuristic techniques have been proposed to solve the MPLRP-PD and the 2E-MPLRP-PD. The benchmarks from the literature were generalized to test and to validate the proposed algorithms
3

Models and algorithms for the capacitated location-routing problem

Contardo, Claudio 07 1900 (has links)
Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48]. / The capacitated location-routing problem (CLRP) arises as a key problem in the design of distribution networks. It generalizes both the capacitated facility location problem (CFLP) and the multiple depot vehicle routing problem (MDVRP), the first by considering additional routing decisions and the second by adding the location decision variables. In this thesis we use different mathematical programming tools to develop and specialize new models and algorithms for solving the CLRP. In Chapter 3, three new models are presented for the CLRP based on vehicle-flow and commodity-flow formulations, all of which are shown to dominate, in terms of the linear relaxation lower bound, the original two-index vehicle-flow formulation [19]. Known valid inequalities are complemented with some new ones and included using separation algorithms that in many cases generalize extisting ones found in the literature. Computational experiments suggest that flow models can be efficient for dealing with small or medium size instances of the CLRP (50 customers or less). In Chapter 4, a new branch-and-cut-and-price exact algorithm is introduced for the CLRP based on a set-partitioning formulation. The pricing problem is a shortest path problem with resource constraints (SPPRC). In particular, we consider a relaxation of such problem in which routes are allowed to contain cycles of length three or more. This is complemented with the development of new valid inequalities that are shown to be effective for closing the optimality gap as well as to restrict the appearance of cycles. Computational experience supports the fact that this method is now the best exact method for the CLRP. In Chapter 5, we introduce a new metaheuristic with the aim of finding good quality solutions in short or moderate computing times. First, a bundle of good solutions is generated with the help of a greedy randomized adaptive search procedure (GRASP). Following this, a blending procedure is applied with the aim of producing a better upper bound as a combination of all the others in the bundle. An iterative destroy-and-repair method is then applied using a location-reallocation model that generalizes the reallocation model due to de Franceschi et al. [48].
4

Approche générique pour la prise de décisions multi-niveaux, contribution à la gestion des systèmes de production de soins en réseau / Generic approach of multi-level decisions making, contribution to the management of healthcare production system network

Chen, Linjie 03 July 2015 (has links)
Le système de santé français est confronté au défi d’augmentation permanente de la demande en soins, sous une forte pression financière. Dans la stratégie nationale de santé, une des grandes orientations est de développer une base de coopération impliquant l’ensemble des acteurs et de leur engagement. Ces enjeux demandent au génie hospitalier de rechercher une efficience dans une échelle encore plus globale, ce qui demande d’intégrer les problèmes locaux et leurs outils d’optimisation qui présentent en général un haut degré de fragmentation, afin de contribuer à l’amélioration globale du système. Dans ce contexte-là, initialisé par un projet de conception du système de soins en réseau avec ressource de production mutualisée, nous proposons à travers ce mémoire de thèse une méthode générique pour résoudre le problème d’optimisation multi-niveaux dans lequel les décisions interdépendantes doivent être prises à différents niveaux dans une structure hiérarchique, ou aux étapes successives. Les décisions faites sont souvent corrélées, surtout pour une topologie de décisions enchaînées en hiérarchique que nous définissons sous le terme de « sous-structure optimale feedback ». La résolution de ce type de problème doit s’adapter pour prendre en compte autant que possible les implications liées aux décisions corrélées. La méthode proposée est basée sur la méta-heuristique PSO, elle utilise une procédure récursive pour définir le transfert des paramètres des sous-problèmes descendant et des évaluations ascendant à travers de multiples espaces de recherche, en assurant la cohérence de la convergence du problème global. Les applications et les analyses ont montrées que la méthode est assez générique et capable de produire la performance et la qualité de résolution proche de celles de la littérature / French healthcare system confronts the challenges of permanent increase in demand for healthcare, under heavy financial pressure. In the national healthcare strategy, a key focus is to develop a cooperation framework involving all organizations and units. These challenges require healthcare engineering to find efficiency in a more global scale, which means to integrate local optimization problems and decision tools that have generally a high degree of fragmentation in order to contribute to the overall improvement of the system. In this thesis, initiated by a shared unit-dose drug distribution system design project, a generic method was developed to solve the multi-level optimization problem in which interdependent decisions are made at different levels in a hierarchical structure, or at successive stages. The decisions made are often correlated, particularly for decisions in hierarchical topologies that we define by the term "optimal substructure with feedback". The resolution of this problem must be adapted to take into account all implications for correlated decisions. The proposed method is based on the meta-heuristic PSO, it uses a recursive procedure to define the top-down transfer of parameters and the bottom-up feedback of fitness through multiple search spaces, and ensures the consistency of global problem convergence. Our applications and analyzes have shown that this method is generic and is able to provide similar resolution performance and quality compared to the literature references
5

Multi-attribute deterministic and stochastic two echelon location routing problems

Escobar Vargas, David 10 1900 (has links)
Les problèmes de localisation-routage à deux échelons (2E-LRP) sont devenus un domaine de recherche important dans le domaine de la logistique et de la gestion de la chaîne d'approvisionnement. Le 2E-LRP représente un problème d'optimisation dans les systèmes de distribution non dirigés, visant à organiser le transport de marchandises entre les plateformes et les clients par le biais d'installations intermédiaires appelées satellites. Ce problème implique de prendre des décisions simultanées concernant l'emplacement d'un ou deux niveaux d'installations (plateformes et/ou satellites) et de créer un ensemble limité d'itinéraires aux deux échelons afin de répondre efficacement à toutes les demandes des clients. Récemment, la communauté scientifique s'est intéressée de plus en plus à l'étude et à la résolution de problèmes plus réalistes. Cet intérêt provient de la reconnaissance du fait que les systèmes de distribution du monde réel sont caractérisés par une multitude de complexités et d'incertitudes qui ont un impact significatif sur l'efficacité opérationnelle, la rentabilité et la satisfaction des clients. Les chercheurs ont reconnu la nécessité d'aborder ces complexités et incertitudes pour développer des solutions pratiques et efficaces. Cette thèse comprend trois études différentes, chacune correspondant à un article de recherche autonome. Dans les trois articles, nous nous concentrons sur différents 2E-LRP riches qui comprennent plusieurs attributs en interaction. Ces variantes du problème sont appelées problèmes de localisation-routage à deux échelons et à attributs multiples (2E-MALRP). Pour analyser l'influence des incertitudes sur les solutions optimales et les processus de prise de décision, nous considérons à la fois les perspectives déterministes et stochastiques. Cette approche nous permet de mieux comprendre le comportement de ces problèmes complexes. Le premier document de recherche abordé dans cette thèse se concentre sur un problème de localisation-routage déterministe à deux échelons et à attributs multiples avec synchronisation de la flotte dans les installations intermédiaires (2E-MALRPS). Le cadre du problème comprend divers facteurs, notamment la demande de marchandises multiples dépendant du temps, les fenêtres temporelles, le manque de capacité de stockage dans les installations intermédiaires et la nécessité de synchroniser les flottes opérant à différents échelons. Dans le 2E-MALRPS, tous les paramètres, tels que les demandes des clients, les temps de trajet et les coûts, sont connus avec certitude. Dans cet article, nous introduisons le cadre du problème, présentons une formulation de programmation en nombres entiers mixtes et proposons un cadre de découverte de discrétisation dynamique comme méthode de résolution du problème. Le deuxième article de cette thèse traite du problème de localisation-routage à deux échelons en cas de demandes stochastiques et corrélées (2E-MLRPSCD). Contrairement au 2E-MALRPS, le 2E-MLRPSCD prend en compte les incertitudes liées aux demandes des clients, ainsi que la corrélation entre ces demandes. Nous formulons le problème sous la forme d'un modèle de programmation stochastique en deux étapes. Au cours de la première étape, des décisions sont prises concernant la conception des installations satellites, tandis qu'au cours de la deuxième étape, des décisions de recours déterminent la manière dont les demandes observées sont servies. Nous proposons une métaheuristique de couverture progressive comme méthode de résolution. Dans cette approche, nous incorporons deux structures de population dans le cadre de la couverture progressive. Ces structures renforcent la diversité des décisions de conception obtenues pour chaque sous-problème de scénario et fournissent des informations pertinentes pour améliorer la qualité de la solution. En outre, nous introduisons et comparons trois nouvelles stratégies différentes pour accélérer la recherche de l'espace de solution pour le problème stochastique. Finalement, le troisième article présenté dans cette thèse se concentre sur un problème de localisation-routage multi-attributs à deux échelons avec des temps de trajet stochastiques (2E-MALRPSTT). Le 2E-MALRPSTT combine un problème multi-attributs riche avec des éléments stochastiques, en particulier en considérant des temps de trajet stochastiques. Pour traiter le problème stochastique complet, un cadre de couverture progressive (PH) est proposé en s'appuyant sur les lignes directrices méthodologiques définies dans notre deuxième article pour le 2E-MLRPSCD. En outre, une heuristique basée sur la décomposition est introduite pour accélérer le cadre PH, et deux nouvelles stratégies d'agrégation sont présentées pour accélérer le processus de consensus concernant les décisions de la première étape. Les contributions présentées dans cette thèse couvrent divers aspects de la modélisation et des méthodologies de solution pour les 2E-MALRP riches, à la fois d'un point de vue déterministe et d'un point de vue stochastique. Les trois articles inclus dans cette thèse démontrent l'efficacité des approches proposées à travers des campagnes expérimentales étendues, mettant en évidence leur efficacité de calcul et la qualité des solutions, en particulier dans les cas difficiles. En abordant les aspects déterministes et stochastiques de ces 2E-MALRP, cette thèse vise à contribuer à l'ensemble des connaissances en optimisation de la logistique et de la chaîne d'approvisionnement, à répondre aux besoins importants de la littérature actuelle et à fournir des informations importantes pour les systèmes de distribution à deux échelons dans divers contextes. / The Two-Echelon Location-Routing Problems (2E-LRPs) have emerged as a prominent research area within the field of logistics and supply chain management. The 2E-LRP represents an optimization problem in undirected distribution systems, aiming to streamline freight transportation between platforms and customers through intermediate facilities known as satellites. This problem involves making simultaneous decisions concerning the location of one or two levels of facilities (platforms and/or satellites) and creating a limited set of routes at both echelons to effectively serve all customer demands. In recent years, there has been a growing interest among the scientific community in studying and solving more realistic problem settings. This interest arises from the recognition that real-world distribution systems are characterized by a multitude of complexities and uncertainties that significantly impact operational efficiency, cost-effectiveness, and customer satisfaction. Researchers have acknowledged the need to address these complexities and uncertainties to develop practical and effective solutions. This dissertation comprises three distinct studies, each serving as a self-contained research article. In all three articles, we focus on different rich 2E-LRPs that encompass multiple interacting attributes. These problem variants are referred to as two-echelon multi-attribute location-routing problems (2E-MALRPs). To analyze the influence of uncertainties on optimal solutions and decision-making processes, we consider both deterministic and stochastic perspectives. This approach allows us to gain insights into the behavior of these complex problem settings. The first research paper addressed in this thesis focuses on a deterministic two-echelon multi-attribute location-routing problem with fleet synchronization at intermediate facilities (2E-MALRPS). The problem setting encompasses various factors, including time-dependent multicommodity demand, time windows, lack of storage capacity at intermediate facilities, and the need for synchronization of fleets operating at different echelons. In the 2E-MALRPS, all parameters, such as customer demands, travel times, and costs, are known with certainty. In this paper, we introduce the problem setting, present a mixed-integer programming formulation, and propose a dynamic discretization discovery framework as the solution method to address the problem. The second paper in this thesis addresses the two-echelon multicommodity location-routing problem with stochastic and correlated demands (2E-MLRPSCD). In contrast to the 2E-MALRPS, the 2E-MLRPSCD takes into account uncertainties related to customer demands, as well as the correlation among these demands. We formulate the problem as a two-stage stochastic programming model. In the first stage, decisions are made regarding the design of satellite facilities, while in the second stage, recourse decisions determine how the observed demands are allocated and served. We propose a progressive hedging metaheuristic as the solution method. In this approach, we incorporate two population structures within the progressive hedging framework. These structures enhance the diversity of the design decisions obtained for each scenario subproblem and provide valuable insights for improving the solution quality. Additionally, We also introduce and compare three different novel strategies to accelerate the search for the solution space for the stochastic problem. Finally, the third paper presented in this thesis focuses on a multi-attribute two-echelon location-routing problem with stochastic travel times (2E-MALRPSTT). The 2E-MALRPSTT combines a rich multi-attribute problem setting with stochastic elements, specifically considering stochastic travel times. To address the complete stochastic problem, a progressive hedging metaheuristic is proposed building on the methodological guidelines defined in our second paper for the 2E-MLRPSCD. Furthermore, a decomposition-based heuristic is introduced to accelerate the PH framework, and two novel selection strategies are presented to expedite the consensus process regarding the first-stage decisions. The contributions presented in this thesis encompass various aspects of modeling and solution methodologies for rich 2E-MALRPs from both deterministic and stochastic perspectives. The three articles included in this thesis demonstrate the effectiveness of the proposed approaches through extensive experimental campaigns, highlighting their computational efficiency and solution quality, particularly in challenging instances. By addressing the deterministic and stochastic aspects of these 2E-MALRPs, this thesis aims to contribute to the broader body of knowledge in logistics and supply chain optimization, fill important gaps in the present literature and provide valuable insights for two-echelon distribution systems in diverse settings.

Page generated in 0.111 seconds