• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1166
  • 189
  • 180
  • 151
  • 105
  • 43
  • 38
  • 38
  • 38
  • 38
  • 38
  • 37
  • 29
  • 22
  • 18
  • Tagged with
  • 2369
  • 305
  • 254
  • 253
  • 182
  • 156
  • 155
  • 151
  • 144
  • 140
  • 140
  • 140
  • 134
  • 128
  • 124
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A map-growing localization algorithm for ad-hoc sensor networks /

Li, Xiaoli, January 2003 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2003. / Typescript. Includes bibliographical references (leaves 34-36). Also available on the Internet.
92

A map-growing localization algorithm for ad-hoc sensor networks

Li, Xiaoli, January 2003 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2003. / Typescript. Includes bibliographical references (leaves 34-36). Also available on the Internet.
93

Automated support for reproducing and debugging field failures

Jin, Wei 21 September 2015 (has links)
As confirmed by a recent survey conducted among developers of the Apache, Eclipse, and Mozilla projects, two extremely challenging tasks during maintenance are reproducing and debugging field failures--failures that occur on user machines after release. In my PhD study, I have developed several techniques to address and mitigate the problems of reproducing and debugging field failures. In this defense, I will present an overview of my work and describe in detail four different techniques: BugRedux, F3, Clause Weighting (CW), and On-demand Formula Computation (OFC). BugRedux is a general technique for reproducing field failures that collects dynamic data about failing executions in the field and uses this data to synthesize executions that mimic the observed field failures. F3 leverages the executions generated by BugRedux to perform automated debugging using a set of suitably optimized fault-localization techniques. OFC and CW improves the overall effectiveness and efficiency of state-of-the-art formula-based debugging. In addition to the presentation of these techniques, I will also present an empirical evaluation of the techniques on a set of real-world programs and field failures. The results of the evaluation are promising in that, for all the failures considered, my approach was able to (1) synthesize failing executions that mimicked the observed field failures, (2) synthesize passing executions similar to the failing ones, and (3) use the synthesized executions successfully to perform fault localization with accurate results.
94

Failure of laterally crushed aluminum tubes under combined bending and tension

Giagmouris, Theofilos 22 December 2010 (has links)
This thesis is concerned with the accurate numerical simulation of localized deformation that can develop into necking and failure, induced by combined bending and tension in aluminum alloy shell structures. The study is motivated by the need to establish the onset and evolution of such failures in imploding underwater cylindrical aluminum alloy shell structures. However, failure under combined bending and tension is also of concern in sheet metal forming. Such localized zones of deformation are shown to develop under controlled conditions in specially designed crushing experiments of Al-6061-T6 cylindrical shells. In these experiments shells of finite length and radially constrained ends are crushed laterally by rigid punches. The crushing, which is conducted under displacement control, causes the shell to develop bending and stretching stresses that lead to arcs of localized wall thinning to appear near the radially constrained locations. The local wall thinning develops into depressions with a width of the order of the shell wall thickness. As crushing progresses the depressions deepen, increase their span, become neck-like and develop inclined failures. The crushing was terminated when the first of four such depressions ruptured. After unloading, the shell was sliced along the principal plane of crushing and the most deformed cross sections of the necks were measured using an optical microscope. The crushing experiments were simulated numerically using solid FE models. The material was modeled as a finitely deforming elastic-plastic solid that hardens isotropically using three constitutive models: the first is based on the von Mises yield function, the second on the non-quadratic isotropic Hosford yield function and the third on the anisotropic Yld04-3D yield function. The models were calibrated to the same stress-strain response and to data from a set of radial biaxial experiments conducted on the same alloy tubes. The overall structural response was reproduced well by all models. Apparently such global responses smear out local differences introduced by the shape of the yield function adopted. However, differences between the three constitutive models were observed in the evolution of localization in the depressions. For the von Mises yield function, the localized deformation was significantly milder than in the experiments. The isotropic Hosford yield function produced necks that were closer to the experimental ones, while Yld04-3D produced results that were very close to the measurements. Clearly, and in concert with other applications, the adoption of a non-quadratic yield function is necessary for reproduction of localization and other challenging deformation histories in Al alloys. The addition of anisotropy in such models improves further the predictions. The results also demonstrated that accurate simulation of the evolution of the depressions in the presence of normal contact stresses requires the use of solid elements. Localization is clearly a three-dimensional phenomenon and shell elements reproduce most of the structural response well, but not the depressions and their evolution that eventually cause failure. / text
95

On the role of microstructure in ductile failure

Ghahremaninezhad Mianji, Ali 26 September 2011 (has links)
Failure in structural materials occurs initially by localization of deformation, and subsequently through a process of nucleation, growth and coalescence of voids. Predicting material failure requires a careful investigation of the different stages of damage evolution at the multiple scales. The main objective of this thesis is to explore the evolution of damage and to correlate this with the deformation of the material at the continuum and microstructural levels. This is accomplished through macroscopic measurements of strain evolution using digital image correlation and microscale measurements of strain and damage using optical and scanning electron microscopy. Three materials with different microstructure were examined. In oxygen-free, high-conductivity copper, a high-purity material without appreciable second phase particles, strain levels in the order of three were observed in the material without any trace of damage. Failure was observed to be triggered by plastic instability in the form of shear bands and the emergence of a prismatic cavity that grows in a self-similar fashion by an alternating slip mechanism. In Al 6061-T6, a material with a dispersion of second phase particles at a volume fraction of about 0.01, nucleation of damage does not appear until plastic strain levels of 0.5 to 1.0. Once damage in the form of particle fracture or decohesion at the interface initiates, subsequent failure follows by the void nucleation, growth and coalescence; but, dominated by the fluctuations in the distribution of second phase particles, final separation occurs in a highly localized layer of material on the order of the grain size, corresponding to a small increase in the overall strain. In nodular cast iron, a material with an initial porosity of about 0.10, growth of voids was observed initially, but this was terminated by a transition of the deformation into a localized region. Phenomenological models based on strain-to-failure and micromechanical models based on a mechanistic description of the microscale deformation are evaluated in light of the above examination of failure in these three classes of materials. / text
96

Recovery of hypothalamic self-stimulation following ventral tegmental lesions in the rat

Corcoran, Michael E. January 1968 (has links)
No description available.
97

Torsion theories and localizations for M-sets

Guruswami, Verena January 1976 (has links)
No description available.
98

Insights into the nuclear localization of Scalloped

Magico, Adam Unknown Date
No description available.
99

The role of tonic neural activity in motivational processes.

Bambridge, Richard. January 1968 (has links)
No description available.
100

Response properties of amygdalar units in the freely moving cat.

O'Keefe, John January 1967 (has links)
No description available.

Page generated in 0.1137 seconds