Spelling suggestions: "subject:"locomotion humaine."" "subject:"iocomotion humaine.""
21 |
Conception mécanique d'une plate-forme de marche entraînée par câblesPerreault, Simon 12 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / Le Laboratoire de robotique de l'Université Laval s'est fixé comme objectif de créer un nouveau type d'interface de locomotion. Ce dernier doit permettre de recréer, de manière exacte, les principaux mouvements exécutés lors de la démarche humaine. D'ailleurs, ce mécanisme est nécessaire à la conception d'un système de réalité virtuelle pouvant reproduire différents types de surfaces à l'utilisateur tout en conservant une inconscience totale de la présence du système de la part de l'usager. Par conséquent, dans le but d'atteindre de tels objectifs, il est requis d'effectuer une étude permettant de déterminer la géométrie adéquate d'un mécanisme respectant des critères de performance aussi exigeants. Ainsi, ce document présente les diverses étapes parcourues lors de l'analyse et de l'obtention de l'architecture d'un mécanisme parallèle à six degrés de liberté entraîne à l'aide de huit câbles. En résumé, l'optimisation de la géométrie, la détection des interférences et la distribution des tensions dans les câbles sont les principaux thèmes qui s'enchaînent dans ce mémoire.
|
22 |
Le rôle fonctionnel du triceps sural durant la marche / The functional role of triceps during human locomotionHoneine, Jean-Louis 22 November 2013 (has links)
La marche humaine nécessite la génération de force propulsive ainsi que des forces antigravitaires pour maintenir l’équilibre. Pour cela, le système nerveux central est requis d’orchestrer la contraction des muscles des membres inférieurs, notamment les fléchisseurs plantaire de la cheville qui interface entre le sol et le corps humain. Durant la première phase de simple appui, le triceps sural (TS) est en contraction excentrique et son activation aide à soutenir le corps en résistant à la rotation du tibia sur le Tarsus. Par contre, la phase finale de simple appui est marquée par une augmentation des forces de réactions au sol « Push-off », du couple articulaire de la cheville et de l’activité électromyographique du TS. Le rôle du TS durant la phase finale de simple appui est l’objet de débat dans la littérature, où certains lui attribut le rôle de propulseurs et d’autre de soutien du corps. Dans ce travail, nous postulons que l’augmentation de l’activité du TS en phase finale de simple d’appui sert uniquement à décélérer la chute du centre de masse. En outre, nous postulons que la modulation temporelle de l’activité du TS permet de contrôler la cinématique (cadence et longueur de pas) et la cinétique de la marche. Deux études ont été mises en places pour tester les hypothèses de travail. Des données biomécaniques mesurées à partir d’une plateforme de force et l’activité EMG du soléaire et des gastrocnémiens latéral et médial de la jambe d’appui ont été collecté pour les deux études. Dans la première études des volontaires ont initié la marche sans et avec un ajout de poids de 20 kg attaché au niveau de la ceinture abdominale. L’ajout du poids augmente les forces de propulsion. Une augmentation de l’activité EMG du triceps permettrait de comprendre si le triceps participe à la génération de force propulsive. La deuxième étude est composée de deux expérimentations. Dans la première expérimentations des volontaires ont accompli 3 conditions de initiation de marche à vitesse variée tout en maintenant la longueur de pas constante. Dans la deuxième expérimentation, les sujets ont été incliné et instruit de récupérer leur équilibre en exécutant un pas de longueur différente. Les résultats ont montré que : 1) le triceps ne participe pas au push-off mais freine la chute du centre de masse en phase finale de simple appui. 2) L'amplification d’activité électromyographique durant la marche rapide est due à l’augmentation de demande de support de corps causé par la croissance des forces inertiels du corps. 3) La durée de contraction du TS permet de déterminer la cadence et la longueur de pas, donc la cinématique de la marche. La durée d’activité du TS permet aussi de déterminer la position du centre de masse par rapport au centre de pression au moment du contact avec le sol. 4) Ceci permet au TS de moduler le couple de déséquilibre responsable des forces propulsives, donc la cinétique de la marche. / Human gait necessitates the generation of both propulsive force to propel the body forward and anti-gravitational force to maintain dynamic postural equilibrium. This requires the central nervous system to orchestrate lower limb muscles. Notably the CNS has to control ankle plantar flexors activity as the whole body rotates around the ankle, which in turn interfaces with the external environment. From early to middle stance, triceps surae (TS) contracts eccentrically thus resisting tibial rotation around the tarsus. However, late stance is marked by an increase in ground reaction forces, commonly known as « Push-off », in ankle torque and electromyographic activity of TS. The role of triceps surae during late stance is object of debate in the literature. Some believe it is responsible for the push-off other insist it is sole role is to maintain dynamic postural equilibrium. In this work, we postulate that the increase in TS activity in late stance is to decelerate vertically the fall of the centre of mass. We further hypothesise that temporal modulation of TS activity determines global gait kinematics (cadence and step length) and kinetics. Two studies have been conducted to test the work hypotheses. Ground reaction force data gathered from a large force platform and EMG activity of soleus, medial and lateral gastrocnemius of stance was measured using surface electrodes. In the first study, subjects initiated gait with and without an added mass of 20 kg attached around the waist. Adding the weight increases propulsive force. If TS activity increases as well than it is responsible for generating propulsive force. The second study is composed of two experiments. In the first volunteers performed gait initiation at three different walking velocity conditions while maintain step length constant. In the second experiment, subjects were inclined and asked to recuperate their equilibrium by performing a step. They were asked to perform three step lengths. Results showed that: 1) Triceps does not participate in push-off but brakes the fall of the centre of mass during late single stance. 2) Increasing TS EMG activity in late stance is due to an increase in the requirement of maintaining dynamic postural equilibrium. 3) Control over the duration of TS activity determines cadence and step length and thus the kinematics of gait. Temporal modulation of TS also sets the position of centre of mass with respect to centre of pressure at the moment of foot-contact. 4) By controlling the distance between the two, the CNS modulates the disequilibrium torque that is responsible for propulsive force and thus the kinetics of gait.
|
23 |
Analyse, Modélisation et Simulation du Mouvement HumainMulton, Franck 08 December 2006 (has links) (PDF)
Comprendre le mouvement humain mobilise des chercheurs de nombreuses disciplines scientifiques : physiologie, biomécanique, neurosciences comportementales, anatomie fonctionnelle, les sciences du sport... Mes travaux s'inscrivent donc dans une démarche pluridisciplinaire d'analyse/synthèse du mouvement humain. Pour mener à bien cette démarche, une première tâche consiste à modéliser et à simuler le système moteur ainsi qu'un ensemble d'hypothèses. L'objectif est de disposer d'une représentation numérique du problème. Les mouvements simulés doivent ensuite être confrontés à des données expérimentales pour valider à la fois les hypothèses, le modèle et la méthode de simulation. Mon travail s'organise en trois principales contributions qui entrent dans cette approche d'analyse/synthèse. La première contribution concerne le développement de nouvelles méthodes de modélisation et de simulation de mouvements permettant de tester des connaissances issues des sciences expérimentales. La méthode doit aussi être capable de calculer très rapidement des mouvements afin d'intégrer les personnages simulés dans des environnements interactifs, comme en réalité virtuelle, par exemple. Pour modéliser et simuler un mouvement naturel, il faut être capable de gérer des contraintes cinématiques (pour tenir compte de la géométrie de son environnement), cinétiques (pour gérer la répartition de ses masses dans l'espace), dynamiques (les lois de la mécanique s'appliquent évidemment aussi) et d'autres que nous regrouperons sous le terme de " style " (lié à des aspects psychologiques, sociologiques...). Nous avons proposé une nouvelle représentation du mouvement humain qui simplifie grandement la résolution de contraintes cinématiques et cinétiques à partir d'un mouvement initial (issu d'un système de mesures ou conçu manuellement). L'hypothèse est que les mouvements mesurés vérifient intrinsèquement la plupart des contraintes citées précédemment. Il est ensuite possible d'ajouter ou de modifier certaines de ces contraintes pour simuler l'adaptation du système moteur à de nouvelles situations. La deuxième contribution concerne la définition d'un protocole de validation des mouvements simulés. C'est un problème difficile car le mouvement humain implique un grand nombre de degrés de liberté et de pas de temps, ce qui conduit à un espace de dimension énorme. Comment ramener cela à une valeur unique de distance ? Les méthodes classiques utilisent des erreurs moyennes, des corrélations ou des correspondances temporelles entre courbes. Cependant, ces valeurs quantifiables ne reflètent pas toujours le réalisme des mouvements simulés si on demande à des sujets d'en juger la qualité. En réalité virtuelle, plusieurs travaux cherchent à évaluer la sensation d'être présent dans un environnement simulé. Nous avons donc proposé de juger du réalisme du mouvement en faisant interagir des sujets réels avec des entités simulées. Ces travaux ont été menés dans le cadre particulier du duel gardien-tireur mais pourraient être étendus à un cas plus général. La troisième contribution concerne une étude transversale de la locomotion bipède via une approche de type analyse/synthèse. L'objectif de ce travail est de déduire complètement un mouvement de locomotion à partir d'un ensemble de données anatomiques et d'hypothèses générales issues de la biomécanique et des neurosciences. Une application évidente concerne la cherche de locomotions possibles pour des espèces fossiles. Fondamentalement, le problème revient à gérer un espace très important de postures possibles à chaque pas de temps et à en extraire une séquence qui soit comparable à ce qu'une créature réelle aurait naturellement produit. Nos travaux ont donc abouti à un une plate-forme de tests d'hypothèses locomotrices (minimisation d'énergie, de la dérivée de l'accélération, de la distance à une posture de référence...). L'entrée principale de cette plate-forme est la description de l'anatomie de la créature et une série d'empreintes à suivre.
|
24 |
Le rôle fonctionnel du triceps sural durant la marcheHoneine, Jean-Louis 22 November 2013 (has links) (PDF)
La marche humaine nécessite la génération de force propulsive ainsi que des forces antigravitaires pour maintenir l'équilibre. Pour cela, le système nerveux central est requis d'orchestrer la contraction des muscles des membres inférieurs, notamment les fléchisseurs plantaire de la cheville qui interface entre le sol et le corps humain. Durant la première phase de simple appui, le triceps sural (TS) est en contraction excentrique et son activation aide à soutenir le corps en résistant à la rotation du tibia sur le Tarsus. Par contre, la phase finale de simple appui est marquée par une augmentation des forces de réactions au sol " Push-off ", du couple articulaire de la cheville et de l'activité électromyographique du TS. Le rôle du TS durant la phase finale de simple appui est l'objet de débat dans la littérature, où certains lui attribut le rôle de propulseurs et d'autre de soutien du corps. Dans ce travail, nous postulons que l'augmentation de l'activité du TS en phase finale de simple d'appui sert uniquement à décélérer la chute du centre de masse. En outre, nous postulons que la modulation temporelle de l'activité du TS permet de contrôler la cinématique (cadence et longueur de pas) et la cinétique de la marche. Deux études ont été mises en places pour tester les hypothèses de travail. Des données biomécaniques mesurées à partir d'une plateforme de force et l'activité EMG du soléaire et des gastrocnémiens latéral et médial de la jambe d'appui ont été collecté pour les deux études. Dans la première études des volontaires ont initié la marche sans et avec un ajout de poids de 20 kg attaché au niveau de la ceinture abdominale. L'ajout du poids augmente les forces de propulsion. Une augmentation de l'activité EMG du triceps permettrait de comprendre si le triceps participe à la génération de force propulsive. La deuxième étude est composée de deux expérimentations. Dans la première expérimentations des volontaires ont accompli 3 conditions de initiation de marche à vitesse variée tout en maintenant la longueur de pas constante. Dans la deuxième expérimentation, les sujets ont été incliné et instruit de récupérer leur équilibre en exécutant un pas de longueur différente. Les résultats ont montré que : 1) le triceps ne participe pas au push-off mais freine la chute du centre de masse en phase finale de simple appui. 2) L'amplification d'activité électromyographique durant la marche rapide est due à l'augmentation de demande de support de corps causé par la croissance des forces inertiels du corps. 3) La durée de contraction du TS permet de déterminer la cadence et la longueur de pas, donc la cinématique de la marche. La durée d'activité du TS permet aussi de déterminer la position du centre de masse par rapport au centre de pression au moment du contact avec le sol. 4) Ceci permet au TS de moduler le couple de déséquilibre responsable des forces propulsives, donc la cinétique de la marche.
|
25 |
Un modèle de locomotion humaine unifiant comportements holonomes et nonholonomesTruong, Tan Viet Anh 02 July 2010 (has links) (PDF)
Notre motivation est de comprendre la locomotion humaine pour un meilleur contrôle des systèmes virtuels (robots et mannequins). La locomotion humaine a été étudiée depuis longtemps dans des domaines différents. Nous considérons la locomotion comme le déplacement d'un repère attaché au corps humain (direction et orientation) au lieu de la trajectoire articulaire du corps complet. Notre approche est basée sur le fondement calculatoire de la locomotion humaine. Le but est de trouver un modèle qui explique la forme de la locomotion humaine dans l'espace. Pour ce faire, nous étudions tout d'abord le comportement des trajectoires au sol pendant la locomotion intentionnelle. Quand un humain marche, il met un pied devant l'autre et par conséquence, l'orientation du corps suit la direction tangente de la trajectoire. C'est ce qu'on appelle l'hypothèse de comportement nonholonome. Cependant, dans le cas d'un pas de côté, l'orientation du corps n'est plus semblable à la direction de trajectoire, et l'hypothèse n'est plus valable. Le comportement de la locomotion devient holonome. Le but de la thèse est de distinguer ces deux comportements et de les exploiter en neuroscience, robotique et animation graphique. La première partie de la thèse présente une étude qui permet de déterminer des configurations de comportement holonome par un protocole expérimental et par une fonction qui segmente les comportements nonholonomes et holonomes d'une trajectoire. Dans la deuxième partie, nous établissons un modèle unifiant comportements nonholonomes et holonomes. Ce modèle combine trois vitesses générant la locomotion humaine : tangentielle, angulaire et latérale. Par une approche de commande optimale inverse nous proposons une fonction multi-objectifs qui optimise des trajectoires calculées pour les rendre proches des trajectoires humaines naturelles. La dernière partie est l'application qui utilise les deux comportements pour synthétiser des locomotions humaines dans un environnement d'an imation graphique. Chaque locomotion est caractérisée par trois vitesses et est donc considérée comme un point dans l'espace de commande 3D (de trois vitesses). Nous avons collecté une librairie qui contient des locomotions de vitesses différentes - des points dans l'espace 3D. Ces points sont structurés en un nuage de tétraèdres. Quand une vitesse désirée est donnée, elle est projetée dans l'espace 3D et on trouve le tétraèdre qui la contient. La nouvelle animation est interpolée par quatre locomotions correspondant aux quatre sommets du tétraèdre. On expose plusieurs scénarios d'animations sur un personnage virtuel.
|
26 |
Un modèle de locomotion humaine unifiant comportements holonomes et nonholonomes / Unifying nonholonomic and holonomic behaviors in human locomotionTruong, Tan Viet Anh 02 July 2010 (has links)
Notre motivation est de comprendre la locomotion humaine pour un meilleur contrôle des systèmes virtuels (robots et mannequins). La locomotion humaine a été étudiée depuis longtemps dans des domaines différents. Nous considérons la locomotion comme le déplacement d’un repère attaché au corps humain (direction et orientation) au lieu de la trajectoire articulaire du corps complet. Notre approche est basée sur le fondement calculatoire de la locomotion humaine. Le but est de trouver un modèle qui explique la forme de la locomotion humaine dans l’espace. Pour ce faire, nous étudions tout d’abord le comportement des trajectoires au sol pendant la locomotion intentionnelle. Quand un humain marche, il met un pied devant l’autre et par conséquence, l’orientation du corps suit la direction tangente de la trajectoire. C’est ce qu’on appelle l’hypothèse de comportement nonholonome. Cependant, dans le cas d’un pas de côté, l’orientation du corps n’est plus semblable à la direction de trajectoire, et l’hypothèse n’est plus valable. Le comportement de la locomotion devient holonome. Le but de la thèse est de distinguer ces deux comportements et de les exploiter en neuroscience, robotique et animation graphique. La première partie de la thèse présente une étude qui permet de déterminer des configurations de comportement holonome par un protocole expérimental et par une fonction qui segmente les comportements nonholonomes et holonomes d’une trajectoire. Dans la deuxième partie, nous établissons un modèle unifiant comportements nonholonomes et holonomes. Ce modèle combine trois vitesses générant la locomotion humaine : tangentielle, angulaire et latérale. Par une approche de commande optimale inverse nous proposons une fonction multi-objectifs qui optimise des trajectoires calculées pour les rendre proches des trajectoires humaines naturelles. La dernière partie est l’application qui utilise les deux comportements pour synthétiser des locomotions humaines dans un environnement d’animation graphique. Chaque locomotion est caractérisée par trois vitesses et est donc considérée comme un point dans l’espace de commande 3D (de trois vitesses). Nous avons collecté une librairie qui contient des locomotions de vitesses différentes – des points dans l’espace 3D. Ces points sont structurés en un nuage de tétraèdres. Quand une vitesse désirée est donnée, elle est projetée dans l’espace 3D et on trouve le tétraèdre qui la contient. La nouvelle animation est interpolée par quatre locomotions correspondant aux quatre sommets du tétraèdre. On expose plusieurs scénarios d’animations sur un personnage virtuel. / Our motivation is to understand human locomotion to better control locomotion of virtual systems (robots and mannequins). Human locomotion has been studied so far in different disciplines. We consider locomotion as the level of a body frame (in direction and orientation) instead of the complexity of many kinematic joints systems as other approaches. Our approach concentrates on the computational foundation of human locomotion. The ultimate goal is to find a model that explains the shape of human locomotion in space. To do that, we first base on the behavior of trajectories on the ground during intentional locomotion. When human walk, they put one foot in front of the other and consequently, the direction of motion is deduced by the body orientation. That’s what we called the nonholonomic behavior hypothesis. However, in the case of a sideward step, the body orientation is not coupled to the tangential direction of the trajectory, and the hypothesis is no longer validated. The behavior of locomotion becomes holonomic. The aim of this thesis is to distinguish these two behaviors and to exploit them in neuroscience, robotics and computer animation. The first part of the thesis is to determine the configurations of the holonomic behavior by an experimental protocol and an original analytical tool segmenting the nonholonomic and holonomic behaviors of any trajectory. In the second part, we present a model unifying nonholonomic and holonomic behaviors. This model combines three velocities generating human locomotion: forward, angular and lateral. The experimental data in the first part are used in an inverse optimal control approach to find a multi-objective function which produces calculated trajectories as those of natural human locomotion. The last part is the application that uses the two behaviors to synthesize human locomotion in computer animation. Each locomotion is characterized by three velocities and is therefore considered as a point in 3D control space (of three speeds). We collected a library that contains locomotions at different velocities - points in 3D space. These points are structured in a tetrahedra cloud. When a desired speed is given, it is projected into the 3D space and we find the corresponding tetrahedron that contains it. The new animation is interpolated by four locomotions corresponding to four vertices of the selected tetrahedron. We exhibit several animation scenarios on a virtual character.
|
27 |
Identification et contrôle des systèmes non linéaires : application aux robots humanoïdesSuleiman, Wael 18 September 2008 (has links) (PDF)
Le travail de recherche dans ce mémoire aborde les problèmes de l'identification des systèmes non linéaires et également de l'application de la théorie d'optimisation. Dans une première partie, nous proposons des méthodes efficaces et nouvelles afin d'identifier les systèmes linéaires dans le cas d'expérimentations multiples, les séries de Volterra à horizon infini et les systèmes quadratiques en l'état. Dans une seconde partie, nous appliquons la théorie d'identification à la modélisation de la locomotion humaine. Nous abordons ensuite l'optimisation des mouvements des robots humanoïdes, l'imitation des mouvements humains par un robot humanoïde et enfin le paramétrage temporel des chemins dans l'espace des configurations pour un robot humanoïde. Les résultats expérimentaux de nos méthodes sur la plate-forme HRP-2 ont révélé non seulement leur efficacité, mais aussi leurs bonnes performances qui dépassent largement celles des méthodes conventionnelles.
|
28 |
An optimality principle governing human walkingArechavaleta-Servin, Gustavo 04 December 2007 (has links) (PDF)
L'objectif dans ce travail est d'étudier la locomotion humaine. Notre approche met en évidence le rapport qui existe entre la forme géométrique des trajectoires locomotrices et le modèle cinématique simplifié d'un robot mobile à roues. Ce type de système a déjà été longtemps étudié dans le domaine de la robotique. D'un point de vue purement cinématique, la particularité d'un robot à roues est la contrainte non holonome qui impose au robot de se déplacer toujours selon la tangente à son axe principal. Dans le cas de la marche humaine, les observations nous montrent que les humains marchent vers l'avant et la direction instantanée du corps est tangente à la trajectoire qu'ils réalisent (dû à certains restrictions mécanique, anatomique... du corps au moment de la marche). Ce couplage entre la direction et la position du corps impose une contrainte non holonome parce qu'elle ne restreint pas la dimension de l'espace accessible à partir d'une configuration quelconque. Du point de vue du conducteur, une voiture possède deux commandes : l'accélérateur et le volant. La première question abordée ici peut être formulée de la manière suivante : où se trouve le ''volant'' du corps humain ? Plusieurs repères ont été associés aux différents parties du squelette (tête, tronc et bassin). Dans notre étude expérimentale nous montrons qu'il existe un repère qui prend en compte la nature non holonome de la locomotion humaine et que c'est le tronc qui joue le rôle du "volant". Nous avons validé notre modèle avec une base de données de 1560 trajectoires enregistrées à partir des trajectoires faites par 7 sujets. La deuxième question abordée dans ce travail est la suivante : parmi toutes les trajectoires possibles qui existent pour atteindre une position avec une orientation données, pourquoi l'humain effectue une trajectoire au lieu d'une autre ? Afin de donner une possible réponse à cette question, nous avons fait appel à la commande optimale : les trajectoires ont été choisies sel on un critère à optimiser. Dans cette perspective, le sujet est vu comme un système de commande, donc, la question devient : quel est le critère à optimiser ? est-ce la longueur de la trajectoire ? ou le temps parcouru ? ou la secousse minimale ?... Dans cet étude nous montrons que les trajectoires locomotrices peuvent être approximées par les géodésiques d'un système différentiel minimisant la norme de la commande. Ces géodésiques sont composés de morceaux de clothoides. Une clothoide, ou spirale de Cornu, est une courbe dont la courbure varie linéairement en fonction de l'abscisse curviligne. Nous montrons que le 90% des trajectoires faites par les 7 sujets ont été approximées avec une erreur moyenne de moins de 10cm. Dans la dernière partie de ce travail nous réalisons la synthèse numérique de trajectoires optimales dans l'espace atteignable. Il s'agit de partitionner l'espace des configurations par rapport aux différents types de trajectoires optimales qui peuvent relier l'origine à un point dans cet espace. Deux points appartiennent à une même cellule si les trajectoires parcourues sont de même type. Dans la plupart des cas le passage entre deux cellules adjacentes se fait par une déformation continue des trajectoires. Il est remarquable de noter que les rares cas de discontinuités du modèle proposé correspondent précisément aux changements de stratégies observées chez les sujets.
|
29 |
Human motion tracking from movie sequencesNguyen, Nhat Tan 18 April 2018 (has links)
Cette thèse présente un ensemble d'outils ou cadre de développement (paradigme) pour suivre le mouvement de personnages humains dans les films. Beaucoup d'applications en forte demande, telle que la surveillance pour la sécurité ou l'interaction homme-machine, profiteraient d'un système qui pourrait détecter et suivre automatiquement des humains. L'exécution de séquences de film réelles pose un défi particulier compte tenu de la non-rigidité du mouvement du corps humains, ainsi que l'influence qu'ont plusieurs facteurs sur son apparence. Parmi eux se trouvrent la différence dans la gamme de conditions d'acquisition, la variation de l'environnement et de l'illumination, le mouvement de caméra et le peu de connaissances a priori dans le positionnement de la caméra. En tant que complément à l'analyse du mouvement humain, ce système vise à aider son utilisateur à détecter de façon automatique le mouvement de la caméra, à diviser la séquence de film en petits segments appelés "prises de vue" et à extraire des informations du mouvement humain en présence d'un arrière-scène complexe. Pour atteindre cet objectif, une estimation précise du flux optique est employée. Un processus d'image par image peut identifier six différents mouvements de la caméra, incluant une camera statique, en utilisant des gabarits prédéterminés. Il peut ensuite fournir une base de données de mouvements de caméra pour la séquence du film. Ces données sont très utiles pour l'annotation, l'indexage et la recherche de séquences vidéos. De plus, une Mixture de Gaussiennes (MoG) dotée d'un espace de couleur RGB normalisé est utilisée pour soustraire un arrière-scène statique, qui permet d'éviter les effets d'ombres. Lors d'un mouvement de caméra, nous optons pour une technique appelée "codage de couleur" pour convertir les champs de vecteurs de mouvement en image colorée et appliquer la soustraction d'arrière-plan conventionnelle à cette image de flux optique de couleurs. Ceci dit, un système de suivi multicouches déployé dans deux directions (d'ordre chronologique et d'ordre anti-chronologique) est aussi décrit dans la thèse. Finalement, l'évaluation de la performance du système est réalisée sur plusieurs séquences extraites des films réels. Les séquences ont été entièrement analysées indépendamment par un observateur humain pour fournir une base de référence réelle sur les mouvements de caméra aussi bien que sur le mouvement humain dans les séquences vidéos. La comparaison entre les résultats et la base de référence indique une performance très prometteuse des approches proposées tant par l'analyse de films que par les applications de surveillance.
|
Page generated in 0.0778 seconds