• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Refinement Types for Logical Frameworks

Lovas, William 01 September 2010 (has links)
The logical framework LF and its metalogic Twelf can be used to encode and reason about a wide variety of logics, languages, and other deductive systems in a formal, machine-checkable way. Recent studies have shown that ML-like languages can profitably be extended with a notion of subtyping called refinement types. A refinement type discipline uses an extra layer of term classification above the usual type system to more accurately capture certain properties of terms. I propose that adding refinement types to LF is both useful and practical. To support the claim, I exhibit an extension of LF with refinement types called LFR,work out important details of itsmetatheory, delineate a practical algorithmfor refinement type reconstruction, andpresent several case studies that highlight the utility of refinement types for formalized mathematics. In the end I find that refinement types and LF are a match made in heaven: refinements enable many rich new modes of expression, and the simplicity of LF ensures that they come at a modest cost.
2

Substructural Logical Specifications

Simmons, Robert J. 14 November 2012 (has links)
A logical framework and its implementation should serve as a flexible tool for specifying, simulating, and reasoning about formal systems. When the formal systems we are interested in exhibit state and concurrency, however, existing logical frameworks fall short of this goal. Logical frameworks based on a rewriting interpretation of substructural logics, ordered and linear logic in particular, can help. To this end, this dissertation introduces and demonstrates four methodologies for developing and using substructural logical frameworks for specifying and reasoning about stateful and concurrent systems. Structural focalization is a synthesis of ideas from Andreoli’s focused sequent calculi and Watkins’s hereditary substitution. We can use structural focalization to take a logic and define a restricted form of derivations, the focused derivations, that form the basis of a logical framework. We apply this methodology to define SLS, a logical framework for substructural logical specifications, as a fragment of ordered linear lax logic. Logical correspondence is a methodology for relating and inter-deriving different styles of programming language specification in SLS. The styles we connect range from very high-level specification styles like natural semantics, which do not fully specify the control structure of programs, to low-level specification styles like destination-passing, which provide detailed control over concurrency and control flow. We apply this methodology to systematically synthesize a low-level destination-passing semantics for a Mini-ML language extended with stateful and concurrent primitives. The specification is mostly high-level except for the relatively few rules that actually deal with concurrency. Linear logical approximation is a methodology for deriving program analyses by performing abstract analysis on the SLS encoding of the language’s operational semantics. We demonstrate this methodology by deriving a control flow analysis and an alias analysis from suitable programming language specifications. Generative invariants are a powerful generalization of both context-free grammars and LF’s regular worlds that allow us to express invariants of SLS specifications in SLS.We show that generative invariants can form the basis of progress-andpreservation- style reasoning about programming languages encoded in SLS.
3

Développement et vérification des logiques probabilistes et des cadres logiques / Development and verification of probability logics and logical frameworks

Maksimović, Petar 15 October 2013 (has links)
On présente une Logique Probabiliste avec des opérateurs Conditionnels - LPCP, sa syntaxe, sémantique, axiomatisation correcte et fortement complète, comprenant une règle de déduction infinitaire. On prouve que LPCP est décidable, et on l'étend pour qu’il puisse représenter l'évidence, en créant ainsi la première axiomatisation propositionnelle du raisonnement basé sur l'évidence. On codifie les Logiques Probabilistes LPP1Q et LPPQ2 dans l'Assistant de Preuve Coq, et on vérifie formellement leurs propriétés principales: correction, complétude fort et non-compacité. Les deux logiques étendent la Logique Classique avec des opérateurs de probabilité, et présentent une règle de déduction infinitaire. LPPQ1 permet des itérations des opérateurs de probabilité, lorsque LPPQ2 ne le permet pas. On a formellement justifié l'utilisation des solveurs SAT probabilistes pour vérifier les questions liées à la cohérence. On présente LFP, un Cadre Logique avec Prédicats Externes, en introduisant un mécanisme pour bloquer et débloquer types et termes dans LF, en permettant l'utilisation d’oracles externes. On démontre que LFP satisfait tous les principales propriétés et on développe un cadre canonique correspondant, qui permet de prouver l’adéquation. On fournit diverses encodages - le λ-calcul non-typé avec la stratégie de réduction CBV, Programmation-par-Contrats, un langage impératif avec la Logique de Hoare, des Logiques Modales et la Logique Linéaire Non-Commutative, en montrant que en LFP on peut codifier aisément des side-conditions dans l'application des règles de typage et atteindre une séparation entre vérification et computation, en obtenant des preuves plus claires et lisibles. / We introduce a Probability Logic with Conditional Operators - LPCP, its syntax, semantics, and a sound and strongly-complete axiomatic system, featuring an infinitary inference rule. We prove the obtained formalism decidable, and extend it so as to represent evidence, making it the first propositional axiomatisation of reasoning about evidence. We encode Probability Logics LPP1Q and LPP2Q in the Proof Assistant Coq and formally verify their key properties - soundness, strong completeness, and non-compactness. Both logics extend Classical Logic with modal-like probability operators, and both feature an infinitary inference rule. LPP1Q allows iterations of probability operators, while LPP2Q does not. In this way, we have formally justified the use of Probabilistic SAT-solvers for the checking of consistency-related questions. We present LFP - a Logical Framework with External Predicates, by introducing a mechanism for locking and unlocking types and terms into LF, allowing the use of external oracles. We prove that LFP satisfies all the main meta-theoretic properties and develop a corresponding canonical framework, allowing for easy proofs of adequacy. We provide a number of encodings - the simple untyped λ-calculus with a Call-by-Value reduction strategy, the Design-by-Contract paradigm, a small imperative language with Hoare Logic, Modal Logics in Hilbert and Natural Deduction style, and Non-Commutative Linear Logic (encoded for the first time in an LF-like framework), illustrating that in LFP we can encode side-conditions on the application of rules elegantly, and achieve a separation between verification and computation, resulting in cleaner and more readable proofs.
4

The Logic of Hereditary Harrop Formulas as a Specification Logic for Hybrid

Battell, Chelsea January 2016 (has links)
Hybrid is a two-level logical framework that supports higher-order abstract syntax (HOAS), where a specification logic (SL) extends the class of object logics (OLs) we can reason about. We develop a new Hybrid SL and formalize its metatheory, proving weakening, contraction, exchange, and cut admissibility; results that greatly simplify reasoning about OLs in systems providing HOAS. The SL is a sequent calculus defined as an inductive type in Coq and we prove properties by structural induction over SL sequents. We also present a generalized SL and metatheory statement, allowing us to prove many cases of such theorems in a general way and understand how to identify and prove the difficult cases. We make a concrete and measurable improvement to Hybrid with the new SL formalization and provide a technique for abstracting such proofs, leading to a condensed presentation, greater understanding, and a generalization that may be instantiated to other logics.

Page generated in 0.0775 seconds