Spelling suggestions: "subject:"ooi conditionnement"" "subject:"ioi conditionnement""
1 |
Propriétés optimales de certains estimateurs d'interaction en analyse de varianceRobert, Claudine 07 May 1982 (has links) (PDF)
On présente un travail relatif 0 l'analyse de variance 0 deux facteurs en présence d'interaction multiplicative. on considère pour les paramètres d'interaction des estimateurs proposes par J.R. Barra. On montre que, sous des hypothèses simples, les lois des estimateurs ont de "bonnes" propriétés d'approximation.
|
2 |
Objective Bayesian analysis of Kriging models with anisotropic correlation kernel / Analyse bayésienne objective des modèles de krigeage avec noyau de corrélation anisotropeMuré, Joseph 05 October 2018 (has links)
Les métamodèles statistiques sont régulièrement confrontés au manque de données qui engendre des difficultés à estimer les paramètres. Le paradigme bayésien fournit un moyen élégant de contourner le problème en décrivant la connaissance que nous avons des paramètres par une loi de probabilité a posteriori au lieu de la résumer par une estimation ponctuelle. Cependant, ce paradigme nécessite de définir une loi a priori adéquate, ce qui est un exercice difficile en l'absence de jugement d'expert. L'école bayésienne objective propose des priors par défaut dans ce genre de situation telle que le prior de référence de Berger-Bernardo. Un tel prior a été calculé par Berger, De Oliveira and Sansó [2001] pour le modèle de krigeage avec noyau de covariance isotrope. Une extension directe au cas des noyaux anisotropes poserait des problèmes théoriques aussi bien que pratiques car la théorie de Berger-Bernardo ne peut s'appliquer qu'à un jeu de paramètres ordonnés. Or dans ce cas de figure, tout ordre serait nécessairement arbitraire. Nous y substituons une solution bayésienne objective fondée sur les posteriors de référence conditionnels. Cette solution est rendue possible par une théorie du compromis entre lois conditionnelles incompatibles. Nous montrons en outre qu'elle est compatible avec le krigeage trans-gaussien. Elle est appliquée à un cas industriel avec des données non-stationnaires afin de calculer des Probabilités de Détection de défauts (POD de l'anglais Probability Of Detection) par tests non-destructifs dans les tubes de générateur de vapeur de centrales nucléaires. / A recurring problem in surrogate modelling is the scarcity of available data which hinders efforts to estimate model parameters. The Bayesian paradigm offers an elegant way to circumvent the problem by describing knowledge of the parameters by a posterior probability distribution instead of a pointwise estimate. However, it involves defining a prior distribution on the parameter. In the absence of expert opinion, finding an adequate prior can be a trying exercise. The Objective Bayesian school proposes default priors for such can be a trying exercise. The Objective Bayesian school proposes default priors for such situations, like the Berger-Bernardo reference prior. Such a prior was derived by Berger, De Oliveira and Sansó [2001] for the Kriging surrogate model with isotropic covariance kernel. Directly extending it to anisotropic kernels poses theoretical as well as practical problems because the reference prior framework requires ordering the parameters. Any ordering would in this case be arbitrary. Instead, we propose an Objective Bayesian solution for Kriging models with anisotropic covariance kernels based on conditional reference posterior distributions. This solution is made possible by a theory of compromise between incompatible conditional distributions. The work is then shown to be compatible with Trans-Gaussian Kriging. It is applied to an industrial case with nonstationary data in order to derive Probability Of defect Detection (POD) by non-destructive tests in steam generator tubes of nuclear power plants.
|
3 |
Prévision non paramétrique dans les modèles de censure via l'estimation du quantile conditionnel en dimension infinie / Nonparametric prediction in censorship models via the estimation of the conditional quantile in infinite dimensionHorrigue, Walid 12 December 2012 (has links)
Dans cette thèse, nous étudions les propriétés asymptotiques de paramètres fonctionnels conditionnels en statistique non paramétrique, quand la variable explicative prend ses valeurs dans un espace de dimension infinie. Dans ce cadre non paramétrique, on considère les estimateurs des paramètres fonctionnels usuels, tels la loi conditionnelle, la densité de probabilité conditionnelle, ainsi que le quantile conditionnel. Le premier travail consiste à proposer un estimateur du quantile conditionnel et de prouver sa convergence uniforme sur un sous-ensemble compact. Afin de suivre la convention dans les études biomédicales, nous considérons une suite de v.a {Ti, i ≥ 1} identiquement distribuées, de densité f, censurée à droite par une suite aléatoire {Ci, i ≥ 1} supposée aussi indépendante, identiquement distribuée et indépendante de {Ti, i ≥ 1}. Notre étude porte sur des données fortement mélangeantes et X la covariable prend des valeurs dans un espace à dimension infinie.Le second travail consiste à établir la normalité asymptotique de l’estimateur à noyau du quantile conditionnel convenablement normalisé, pour des données fortement mélangeantes, et repose sur la probabilité de petites boules. Plusieurs applications à des cas particuliers ont été traitées. Enfin, nos résultats sont appliqués à des données simulées et montrent la qualité de notre estimateur. / In this thesis, we study some asymptotic properties of conditional functional parameters in nonparametric statistics setting, when the explanatory variable takes its values in infinite dimension space. In this nonparametric setting, we consider the estimators of the usual functional parameters, as the conditional law, the conditional probability density, the conditional quantile. We are essentially interested in the problem of forecasting in the nonparametric conditional models, when the data are functional random variables. Firstly, we propose an estimator of the conditional quantile and we establish its uniform strong convergence with rates over a compact subset. To follow the convention in biomedical studies, we consider an identically distributed sequence {Ti, i ≥ 1}, here density f, right censored by a random {Ci, i ≥ 1} also assumed independent identically distributed and independent of {Ti, i ≥ 1}. Our study focuses on dependent data and the covariate X takes values in an infinite space dimension. In a second step we establish the asymptotic normality of the kernel estimator of the conditional quantile, under α-mixing assumption and on the concentration properties on small balls of the probability measure of the functional regressors. Many applications in some particular cases have been also given.
|
Page generated in 0.1141 seconds