Spelling suggestions: "subject:"ooi dde darcy"" "subject:"ooi dde marcy""
11 |
Instabilités hydrodynamiques des liquides magnétiques miscibles et non miscibles dans une cellule de Hele-ShawIgonin, Maksim 29 November 2004 (has links) (PDF)
Ce manuscrit décrit analytiquement et numériquement les instabilités d'un fluide magnétique dans une cellule de Hele-Shaw. On considère l'interface entre un fluide magnétique et un autre fluide non magnétique, miscible ou non, soumise à un champ magnétique homogène normal à la cellule ou à l'interface. Le champ démagnétisant est inhomogène à cette interface et génère un mouvement convectif des fluides. Dans la première partie, nous avons utilisé une analyse linéaire de stabilité entre deux liquides miscibles pour une distribution donnée de concentration à l'interface. Les résultats s'appliquent aussi à la stabilité d'un réseau de concentration induit par une expérience de Rayleigh forcé. Nous avons démontré que l'équation de Brinkman décrit mieux la dissipation visqueuse dans une cellule de Hele-Shaw que celle de Darcy. Nous avons trouvé que la viscosité (et non la diffusion massique) donnait à l'écoulement une échelle de longueur de l'ordre de l'épaisseur de la cellule dans le cas des forçages élevés. Dans la seconde partie de notre étude, nous avons modélisé la dynamique non linéaire de l'interface avec une tension superficielle par la méthode des intégrales de frontière. Nous avons décrit la modification des doigts de Saffman–Taylor par les forces magnétostatiques. Nous avons obtenu des structures dendritiques proches de celles observées expérimentalement et analysé quelques aspects de la formation des motifs.
|
12 |
Écoulements de fluides à seuil en milieux confinésChevalier, Thibaud 24 October 2013 (has links) (PDF)
Afin de mieux comprendre les spécificités de l'écoulement des fluides en seuil en géométries confinées, nous avons opté pour une approche multi-échelle expérimentale et/ou numérique dans des milieux poreux complexes et modèles. Nous montrons qu'il est possible d'utiliser la RMN pour visualiser des écoulements de fluides à seuil en géométrie complexe. Dans un milieu poreux, il est également possible de mesurer la distribution statistique des vitesses, ceci sans problème de résolution spatiale, grâce à la méthodologie de réglage d'une expérience d'injection sous IRM que nous avons mise en place. A l'aide de ces techniques, nous montrons que l'écoulement d'un fluide à seuil dans un pore modèle (une expansion-contraction axisymétrique) se localise dans la partie centrale du pore, dans le prolongement du tube d'entrée, tandis que les régions extérieures restent dans le régime solide. Des simulations numériques confirment ces résultats et montrent que la localisation de l'écoulement provient du confinement engendré par la géométrie. A l'inverse, nous montrons que pour un fluide à seuil s'écoulant dans un milieu poreux réel (en trois dimensions), il n'existe pas de zones au repos. De plus, la distribution de vitesse est identique à celle d'un fluide newtonien. Une analyse de ces résultats nous permet de prédire la forme de la loi de Darcy pour les fluides à seuil et de comprendre l'origine physique des paramètres déterminés par des expériences d'injection " macroscopiques "
|
Page generated in 0.0372 seconds