• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterizing femoral structure of the Ts66Yah mouse model of Down syndrome

Kourtney N Sloan (16642212) 30 August 2023 (has links)
<p>  </p> <p>Down syndrome (DS) is caused by the partial or complete trisomy of human chromosome 21 (Hsa21) and can result in skeletal deficits, including lower bone mineral density (BMD) and increased risk of fracture and osteoporosis or osteopenia earlier than the general population. Mouse models of DS have been developed to understand the genetic mechanisms resulting in these phenotypes, but models differ due to the complex genetic nature of DS and differing genome structures between humans and mice. Ts65Dn mice have been a popular model of DS as they contain ~50% of Hsa21 orthologous genes on a freely segregating minichromosome, but there is speculation that the phenotypes are exaggerated by non-Hsa21 orthologous trisomic genes also present. To address this issue, the Ts66Yah mouse model was developed to remove the non-Hsa21 orthologous trisomic genes. In this study, male and female Ts66Yah mouse femurs were evaluated during bone accrual and peak bone mass to investigate structural differences using micro-computed tomography. Additionally, the role of trisomic <em>Dyrk1a</em>, a Hsa21 gene previously linked to bone deficits in Ts65Dn mice, was evaluated through genetic and pharmacological means in Ts66Yah femurs at postnatal day 36. Ts66Yah mice were found to have little or no trabecular deficits at any age evaluated, but sex-dependent cortical deficits were present at all ages investigated. Reducing <em>Dyrk1a</em> copy number in Ts66Yah mice significantly improved cortical deficits but did not return cortical bone to euploid levels. Pharmacological treatment with DYRK1A inhibitor L21 was confounded by multiple variables, making it difficult to draw conclusions about DYRK1A inhibition in this manner. Overall, these results indicate trabecular deficits associated with Ts65Dn mice may be due to the non-Hsa21 orthologous trisomic genes, and more Hsa21 orthologous trisomic genes are necessary to produce trabecular deficits in DS model mice. As more mouse models of DS are developed, multiple models need to be assessed to accurately define DS-associated phenotypes and test potential treatments.</p>
12

Quantitative Computed-Tomography Based Bone-Strength Indicators for the Identification of Low Bone-Strength Individuals in a Clinical Environment

Varghese, Bino Abel 21 March 2011 (has links)
No description available.
13

A comparative microscopic study of human and non-human long bone histology

Nor, Faridah Mohd January 2009 (has links)
Identification of human or nonhuman skeletal remains is important in assisting the police and law enforcement officers for the investigation of forensic cases. Identification of bone can be difficult, especially in fragmented remains. It has been reported that 25 to 30% of medicolegal cases, which involved nonhuman skeletal remains have been mistaken for human. In such cases, histomorphometric method was used to identify human and nonhuman skeletal remains. However, literature has shown that histomorphometric data for human and nonhuman bone were insufficient. Additionally, age estimation in bone may help in the identification of human individual, which can be done by using a histomorphometric method. Age estimation is based on bone remodeling process, where microstructural parameters have strong correlations with age. Literature showed that age estimation has been done on the American and European populations. However, little work has been done in the Asian population. The aims of this project were thus, to identify human and nonhuman bone, and to estimate age in human bones by using histomorphometric analysis. In this project, 64 human bones and 65 animal bones were collected from the mortuary of the Universiti Kebangsaan Malaysia Medical Centre and the Zoos in Malaysia, respectively. A standard bone preparation was used to prepare human and nonhuman bone thin sections for histomorphometric assessment. Assessments were made on the microstructural parameters such as cortical thickness, medullary cavity diameter, osteon count, osteon diameter, osteon area, osteon perimeter, Haversian canal diameter, Haversian canal area, Haversian canal perimeter, and Haversian lamella count per osteon by using image analysis, and viewed under a transmitted light microscope. The microstructural measurements showed significant differences between human and nonhuman samples. The discriminant functions showed correct classification rates for 81.4% of cases, and the accuracy of identification was 96.9% for human and 66.2% for animal. Human age estimation showed a standard error of estimate of 10.41 years, comparable with those in the literature. This study project offers distinct advantages over currently available histomorphometric methods for human and nonhuman identification and human age estimation. This will have significant implications in the assessment of fragmentary skeletal and forensic population samples for identification purposes.
14

A comparative microscopic study of human and non-human long bone histology.

Nor, Faridah M. January 2009 (has links)
Identification of human or nonhuman skeletal remains is important in assisting the police and law enforcement officers for the investigation of forensic cases. Identification of bone can be difficult, especially in fragmented remains. It has been reported that 25 to 30% of medicolegal cases, which involved nonhuman skeletal remains have been mistaken for human. In such cases, histomorphometric method was used to identify human and nonhuman skeletal remains. However, literature has shown that histomorphometric data for human and nonhuman bone were insufficient. Additionally, age estimation in bone may help in the identification of human individual, which can be done by using a histomorphometric method. Age estimation is based on bone remodeling process, where microstructural parameters have strong correlations with age. Literature showed that age estimation has been done on the American and European populations. However, little work has been done in the Asian population. The aims of this project were thus, to identify human and nonhuman bone, and to estimate age in human bones by using histomorphometric analysis. In this project, 64 human bones and 65 animal bones were collected from the mortuary of the Universiti Kebangsaan Malaysia Medical Centre and the Zoos in Malaysia, respectively. A standard bone preparation was used to prepare human and nonhuman bone thin sections for histomorphometric assessment. Assessments were made on the microstructural parameters such as cortical thickness, medullary cavity diameter, osteon count, osteon diameter, osteon area, osteon perimeter, Haversian canal diameter, Haversian canal area, Haversian canal perimeter, and Haversian lamella count per osteon by using image analysis, and viewed under a transmitted light microscope. The microstructural measurements showed significant differences between human and nonhuman samples. The discriminant functions showed correct classification rates for 81.4% of cases, and the accuracy of identification was 96.9% for human and 66.2% for animal. Human age estimation showed a standard error of estimate of 10.41 years, comparable with those in the literature. This study project offers distinct advantages over currently available histomorphometric methods for human and nonhuman identification and human age estimation. This will have significant implications in the assessment of fragmentary skeletal and forensic population samples for identification purposes.
15

Tvar, velikost a proporce dlouhých kostí dolních končetin u lidských populací od pozdní doby kamenné po novověk. / Shape, size and proportions of lower limb long bones among human populations from Eneolithic to the Modern Era.

Šídová, Markéta January 2011 (has links)
Differences in the lifestyle of various populations may lead to changes in the shape of the long limb bones. This involves a reaction to the degree of mechanical and environmental stress acting upon these bones. Our work examined changes in the shape, proportions and size of the lower limb long bones (femur, tibia) over roughly the past five thousand years, or more precisely from the later phase of the Early Stone Age up to the 20th century. We studied the femurs and tibias of a total 520 adult individuals − 313 males and 207 females − from seven different periods or rather archaeological cultures. Our evaluation was based on the external, linear dimensions of the bones studied. Biological parameters were evaluated in relation to sexual dimorphism and lateral asymmetry. We paid special attention to the degree of flattening of the proximal third of the femoral and tibial shafts. Sexual dimorphism differed in individual populations. We found the least statistically significant parameters of sexual dimorphism in the oldest, Eneolithic, samples. In contrast, both sexes differed in the greatest number of parameters in the Early Middle Ages. Lateral asymmetry was most frequently demonstrated for the width dimensions in the case of the femoral and tibial diaphyses, which are in complete concurrence with...

Page generated in 0.044 seconds