• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • Tagged with
  • 27
  • 27
  • 10
  • 10
  • 9
  • 9
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Real-time computer platform for vibration-based structural health monitoring of the Confederation Bridge /

Desjardins, Serge L. January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2005. / Includes bibliographical references (p. 181-186). Also available in electronic format on the Internet.
22

Advanced Numerical Techniques for Dynamic and Aerodynamic Analysis of Bridges

Naderian, Hamidreza January 2017 (has links)
To meet the economic, social and infrastructure needs of the community for safe and efficient transportation systems, long span bridges have been built throughout the world. Long span bridges are one of the most challenging kinds of structures in civil engineering. The cable-stayed bridges are of great interest mainly as an alternative and a more economic solution than the one of suspension bridges. In addition, the fiber reinforced polymer (FRP) composites are, nowadays, successfully used for constructing modern bridges, where the significant weight saving provides additional benefits. Because of the great flexibility, modern long-span cable-stayed bridges are usually very susceptible to dynamic loads especially to the earthquake and strong winds. Therefore, the earthquake-resistant and wind-resistant designs become one of key issues for successful construction of bridges. The objective of the present research is to develop a very efficient spline finite strip technique, for modelling and analysis of both conventional and hybrid FRP cable-stayed bridges. The study falls into the categories of bending, free vibration, seismic, and aerodynamic flutter analysis. The spline finite strip method (SFSM) is one of the most efficient numerical methods for structural analysis of bridges, reducing the time required for estimating the structural response without affecting the degree of accuracy. In the finite strip method, the degrees of freedom could be significantly reduced due to the semi-analytical nature of this method. However, the previous versions of SFSM are not able to model the entire bridge system. For that reason, the structural interactions between different structural components of the bridge could not be handled. In addition, the vibrations and displacements of the towers and cables could not be investigated. In the present formulation, all these obstacles have been eliminated. Moreover, the proposed finite strip technique is very efficient and accurate due to the drastic reduction in the formulation time, simplicity of data preparation, rapid rate convergence of the results, and the semi-analytical nature. Last but not least, and for the first time, a fully finite strip solution is extended to the area of wind engineering. Using the spline finite strip discretization, the aerodynamic stiffness and mass properties of the long-span cable-stayed bridge are derived. The aerodynamic properties along with the structural properties of long-span plates and bridges are formulated in the aerodynamic equation of motion and are used to analyze the flutter problem. The accuracy and efficiency of the proposed advanced finite strip method is verified against the finite element and field measurement results. The results demonstrate that this methodology and the associated computer code can accurately predict the dynamic and aerodynamic responses of the conventional and FRP long-span cable-stayed bridge systems. The outcome of the present research will lead to a comprehensive structural analysis of bridges in the framework of the proposed discretization which is more efficient and straightforward than the finite element analysis.
23

Structural Identification Through Monitoring, Modeling And Predictive Analysis Under Uncertainty

GÖKÇE, Hasan Burak 01 January 2012 (has links)
Bridges are critical components of highway networks, which provide mobility and economical vitality to a nation. Ensuring the safety and regular operation as well as accurate structural assessment of bridges is essential. Structural Identification (St-Id) can be utilized for better assessment of structures by integrating experimental and analytical technologies in support of decision-making. St-Id is defined as creating parametric or nonparametric models to characterize structural behavior based on structural health monitoring (SHM) data. In a recent study by the ASCE St-Id Committee, St-Id framework is given in six steps, including modeling, experimentation and ultimately decision making for estimating the performance and vulnerability of structural systems reliably through the improved simulations using monitoring data. In some St-Id applications, there can be challenges and considerations related to this six-step framework. For instance not all of the steps can be employed; thereby a subset of the six steps can be adapted for some cases based on the various limitations. In addition, each step has its own characteristics, challenges, and uncertainties due to the considerations such as time varying nature of civil structures, modeling and measurements. It is often discussed that even a calibrated model has limitations in fully representing an existing structure; therefore, a family of models may be well suited to represent the structure’s response and performance in a probabilistic manner. The principle objective of this dissertation is to investigate nonparametric and parametric St-Id approaches by considering uncertainties coming from different sources to better assess the structural condition for decision making. In the first part of the dissertation, a nonparametric StId approach is employed without the use of an analytical model. The new methodology, which is iv successfully demonstrated on both lab and real-life structures, can identify and locate the damage by tracking correlation coefficients between strain time histories and can locate the damage from the generated correlation matrices of different strain time histories. This methodology is found to be load independent, computationally efficient, easy to use, especially for handling large amounts of monitoring data, and capable of identifying the effectiveness of the maintenance. In the second part, a parametric St-Id approach is introduced by developing a family of models using Monte Carlo simulations and finite element analyses to explore the uncertainty effects on performance predictions in terms of load rating and structural reliability. The family of models is developed from a parent model, which is calibrated using monitoring data. In this dissertation, the calibration is carried out using artificial neural networks (ANNs) and the approach and results are demonstrated on a laboratory structure and a real-life movable bridge, where predictive analyses are carried out for performance decrease due to deterioration, damage, and traffic increase over time. In addition, a long-span bridge is investigated using the same approach when the bridge is retrofitted. The family of models for these structures is employed to determine the component and system reliability, as well as the load rating, with a distribution that incorporates various uncertainties that were defined and characterized. It is observed that the uncertainties play a considerable role even when compared to calibrated model-based predictions for reliability and load rating, especially when the structure is complex, deteriorated and aged, and subjected to variable environmental and operational conditions. It is recommended that a family-of-models approach is suitable for structures that have less redundancy, high operational importance, are deteriorated, and are performing under close capacity and demand levels
24

Evaluation of Compression Testing and Compression Failure Modes of Paperboard : Video analysis of paperboard during short-span compression and the suitability of short- and long-span compression testing of paperboard / Utvärdering av kompressionsbrottmoder och kompressionstestning för kartong : Videoanalys av kartong under kompressionstestning och lämpligheten av två olika kompressionsmetoder

Sjöstrand, Björn January 2013 (has links)
The objectives of the thesis were to find the mechanisms that govern compression failures in paperboard and to find the link between manufacturing process and paperboard properties. The thesis also investigates two different test methods and evaluates how suitable they are for paperboard grades. The materials are several commercial board grades and a set of hand-formed dynamic sheets that are made to mimic the construction of commercial paperboard. The method consists of mounting a stereomicroscope on a short-span compression tester and recording the compression failure on video, long-span compression testing and standard properties testing. The observed failure modes of paperboard under compression were classified into four categories depending on the appearance of the failures. Initiation of failure takes place where the structure is weakest and fiber buckling happens after the initiation, which consists of breaking of fiber-fiber bonds or fiber wall delamination. The compression strength is correlated to density and operations and raw materials that increase the density also increases the compression strength. Short-span compression and Long-span compression are not suitable for testing all kinds of papers; the clamps in short-span give bulky specimens an initial geometrical shape that can affect the given value of compression strength. Long-span compression is only suitable for a limited range of papers, one problem with too thin papers are low wavelength buckling.
25

Frequency Domain Analysis of Composite Long-Span Cable-Stayed Bridges by Finite Strip Method

Li, Haoran January 2017 (has links)
The finite strip method (FSM) is a very efficient numerical method employed for performing the structural analysis of slender structures, such as cable-stayed bridges; the strip discretization of the model allows for the usage of a lower number of degrees of freedom, in comparison with the finite element method (FEM), while, as it will be discussed in the current research, the results obtained from both methods are in relatively good agreement. Moreover, to address the latest developments in the area of smart construction materials used for long-span bridges, the fiber reinforced polymer (FRP) composites were implemented for the bridge deck modeling, as part of a hybrid composite FRP cable-stayed bridge, and an extend laminate integrated finite strip method (LFSM) was applied for estimating the static structural performance of the hybrid composite FRP long-span cable-stayed bridge under several concentrated and uniformly distributed loadings. The free vibrations analysis was conducted for the Kap Shui Mun Cable-stayed Bridge model, and the natural frequencies were compared with the ones obtained from an FE model of the same bridge. One of the advantages of using the integrated finite strip method is that number of vibration modes, which can be included in the dynamic analysis when the effect of a sweeping sinus and a seismic loading are investigated when a conventional FE analysis would fail to converge. The outcomes of this research will set the stage for the hybrid long-span cable-stayed bridges modeling by the laminate integrated finite strip method (LFSM) which is more efficient and straightforward than the finite element analysis, for performing the static, free vibration, time domain, and frequency domain analyses.
26

Galerie letecké techniky a tradic letectví na letišti Medlánky v Brně / Gallery aviation technology and traditions of aviation at the airport Medlánky in Brno

Rebrova, Tatiana January 2016 (has links)
Area of the airport Medlánky is situated on the border of city districts Brno-Medlánky and Brno-Komín near the nature reserve "Medlánecké kopce". The designed gallery of aviation is a two-storey building, which consists of three parts. The main part is the exhibition space for airplanes, which is formed of a single-storey long-span hall, with the two-storey entrance part of the complex of buildings connected to it, in which are situated the area of the entrance, the training center (detached workplace of the institute of aviation FS BUT in Brno) and the administration. In the building of the original hangar, which is located along the street Turistická are located restaurants and aeroclub. Exhibition hall of the building of the gallery is formed by the structural system of the arched wooden glulam beams. The load-bearing wooden structures are visible and form the elements of the interior of the exhibition space. Two-storey extention of the entrance part of the building is structurally designed as a skeleton wooden structure. The material exception is the area of the entrance, which is made of monolithic concrete.
27

[en] AERODYNAMIC CONTROL OF FLUTTER OF SUSPENSION BRIDGES / [pt] CONTROLE AERODINÂMICO DE TABULEIROS DE PONTES COM USO DE SUPERFÍCIES ATIVAS

GILBERTO DE BARROS RODRIGUES LOPES 27 May 2019 (has links)
[pt] Pontes com vãos superiores a 2.000 m tornam-se muito sensíveis à ação do vento, particularmente ao drapejamento. Nesta tese é estudado um método para a supressão do drapejamento em pontes de grandes vãos através de um controle aerodinâmico ativo. Apresentam-se técnicas analíticas de projeto para o controle ativo do sistema aero elástico constituído pelo tabuleiro e por duas superfícies de controle. Estas técnicas são baseadas em aproximações racionais das cargas aerodinâmicas não permanentes (ou auto-excitadas) no domínio Laplaciano, no qual as equações de movimento são representadas por equações matriciais de coeficientes constantes. A primeira parte da tese é dedicada à formulação matricial das funções racionais conhecida como Minimum State, assim como a aplicações a dados aerodinâmicos obtidos experimentalmente para vários tipos de seções transversais de pontes. A precisão das aproximações é calculada. Desenhos dos derivativos aerodinâmicos, dados sob forma de tabelas, e das respectivas aproximações, são elaborados para fins de comparação. Em seguida, são apresentadas as equações em espaço de estado descrevendo o comportamento aeroelástico de uma seção transversal de ponte. A partir dos dados geométricos e características dinâmicas de uma determinada ponte, (massa, momento de inertia polar, frequências naturais e fatores de amortecimento), e assumindo a semelhança geométrica entre as seções transversais da ponte em verdadeira grandeza e do modelo em escala do qual os derivativos aerodinâmicos foram extraídos, é possível calcular a velocidade crítica desta ponte, utilizando os programas em linguagem MATLAB apresentados no corpo deste trabalho. Esta parte da tese mostra ser possível construir um catálogo com vários perfis de pontes, caracterizados por derivativos aerodinâmicos variáveis em função de frequências reduzidas adimensionais, e das funções racionais correspondentes. A segunda parte é dedicada à fomulação das equações de movimento em espaço de estado, descrevendo o comportamento aeroelástico do sistema tabuleiro - superfícies de controle. As equações resultantes são ampliadas com novos estados aerodinâmicos responsáveis pela modelagem da influência do fluxo de ar sobre o tabuleiro e sobre as superfícies de controle em movimento. As equações de movimento são função da velocidade média do vento incidente. A dependência da equação de movimento à velocidade do vento motivou a aplicação dos conceitos de realimentação de ganhos, constante e variável, ao problema da supressão do drapejamento, os quais são apresentados separadamente em dois capítulos.O enfoque de ganho variável de saída é formulado em termos de minimização de um índice de desempenho dimensionalmente proporcional à soma do trabalho realizado pelas superfícies de controle e da energia cinética proporcional à velocidade vertical do tabuleiro. Apresenta-se também em detalhe um método sistemático para determinar a matriz de controle de ganhos variável, aplicada ao caso hipotético da ponte de Gibraltar. Neste caso, o conceito de realimentação de ganhos variável mostrou-se muito efetivo em suprimir o drapejamento do tabuleiro da ponte. Diferentes características geométricas e dinâmicas de outras pontes podem ser introduzidas nos programas MATLAB apresentados no Apêndice, para obtenção da velocidade crítica nos casos de tabuleiros isolados, tabuleiros com asas estacionárias e tabuleiros com asas giratórias ativamente controladas, para supressão do drapejamento do tabuleiro. / [en] Long span bridges, with main spans beyond 2.000 m become highly sensitive to wind action, particularly to flutter. An active aerodynamic control method of suppressing flutter of very long span bridges is studied in this thesis. Analytical design techniques for active control of the aeroelastic system consisting of the bridge deck and two control surfaces are presented. These techniques are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yieds matrix equations of motion with constant coefficientes. The first part of this thesis is dedicated to the matrix formulation of the rational functions known as Minimum State and to applications to aerodynamic data obtained experimentally for various types of bridge profiles. The precision of the approximations iscalculated, and plots of the approximation functions compared to the available tabular data are drawn. Next, the state-space equations of motion describing the aeroelastic behaviour of a section of a bridge deck is presented. Given the dynamic data of a bridge structure (mass, rotational mass moment of inertia, natural frequencies, stiffness and damping ratios), and assuming that a geometric similitude exists between the profiles of the full-scale bridge deck and the sectional model from which the frequency dependent aerodynamic data was extracted, it is possible to calculate the critical velocity of that particular bridge. This part of the thesis shows that it is possible to build up a catalog of several profiles, characterized by frequency dependent aerodynamic data and the corresponding rational functions. The second part is dedicated to the formulation of the state-space equations of motion describing the aeroelastic behaviour of the entire system consisting of the bridge deck and control surfaces. The resulting equation includes new aerodynamic states which model the air flow influence on the moving deck. The equation of motion is a function of the mean velocity of the incoming wind. The dependence of the equation of motion on the wind velocity motivated the application of a constant and a variable-gain feedback concept to the problem of flutter suppressing, which are presented separatelly. The output variable-gain approach is formulated in terms of minimizing a performance index dimensionally proportional to the sum of the work done by the rotating control surfaces and the kinetic energy of the heaving velocity. A sistematic method to determine the matrix of variable control gains is shown in detail, as applied to the hypothethical case of Gibraltar bridge. Application of the variablegain feedback concept was found to be very effective in suppressing flutter of the bridge deck. Different geometric and dynamic characteristics can be introduced in the MATLAB programs included in this work, in order to obtain the critical velocities of a bridge deck alone, a bridge deck with stationary wings and a bridge with moving wings activelly controled.

Page generated in 0.0603 seconds