Spelling suggestions: "subject:"long tem evolution"" "subject:"hong tem evolution""
21 |
Increased energy efficiency in LTE networks through reduced early handoverKanwal, Kapil January 2017 (has links)
Long Term Evolution (LTE) is enormously adopted by several mobile operators and has been introduced as a solution to fulfil ever-growing Users (UEs) data requirements in cellular networks. Enlarged data demands engage resource blocks over prolong time interval thus results into more dynamic power consumption at downlink in Basestation. Therefore, realisation of UEs requests come at the cost of increased power consumption which directly affects operator operational expenditures. Moreover, it also contributes in increased CO2 emissions thus leading towards Global Warming. According to research, Global Information and Communication Technology (ICT) systems consume approximately 1200 to 1800 Terawatts per hour of electricity annually. Importantly mobile communication industry is accountable for more than one third of this power consumption in ICT due to increased data requirements, number of UEs and coverage area. Applying these values to global warming, telecommunication is responsible for 0.3 to 0.4 percent of worldwide CO2 emissions. Moreover, user data volume is expected to increase by a factor of 10 every five years which results in 16 to 20 percent increase in associated energy consumption which directly effects our environment by enlarged global warming. This research work focuses on the importance of energy saving in LTE and initially propose bandwidth expansion based energy saving scheme which combines two resource blocks together to form single super RB, thereby resulting in reduced Physical Downlink Control Channel Overhead (PDCCH). Thus, decreased PDCCH overhead helps in reduced dynamic power consumption up to 28 percent. Subsequently, novel reduced early handover (REHO) based idea is proposed and combined with bandwidth expansion to form enhanced energy ii saving scheme. System level simulations are performed to investigate the performance of REHO scheme; it was found that reduced early handover provided around 35% improved energy saving while compared to LTE standard in 3rd Generation Partnership Project (3GPP) based scenario. Since there is a direct relationship between energy consumption, CO2 emissions and vendors operational expenditure (OPEX); due to reduced power consumption and increased energy efficiency, REHO subsequently proven to be a step towards greener communication with lesser CO2 footprint and reduced operational expenditure values. The main idea of REHO lies in the fact that it initiate handovers earlier and turn off freed resource blocks as compare to LTE standard. Therefore, the time difference (Transmission Time Intervals) between REHO based early handover and LTE standard handover is a key component for energy saving achieved, which is estimated through axiom of Euclidean geometry. Moreover, overall system efficiency is investigated through the analysis of numerous performance related parameters in REHO and LTE standard. This led to a key finding being made to guide the vendors about the choice of energy saving in relation to radio link failure and other important parameters.
|
22 |
Dense wireless network design and evaluation : an aircraft cabin use caseCogalan, Tezcan January 2018 (has links)
One of the key requirements of fifth generation (5G) systems is having a connection to mobile networks without interruption at anytime and anywhere, which is also known as seamless connectivity. Nowadays, fourth generation (4G) systems, Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A), are mature enough to provide connectivity to most terrestrial mobile users. However, for airborne mobile users, there is no connection that exists without interruption. According to the regulations, mobile connectivity for aircraft passengers can only be established when the altitude of the aircraft is above 3000 m. Along with demands to have mobile connectivity during a flight and the seamless connectivity requirement of 5G systems, there is a notable interest in providing in-flight wireless services during all phases of a flight. In this thesis, many issues related to the deployment and operation of the onboard systems have been investigated. A measurement and modelling procedure to investigate radio frequency (RF) propagation inside an aircraft is proposed in this thesis. Unlike in existing studies for in-cabin channel characterization, the proposed procedure takes into account the deployment of a multi-cell onboard system. The proposed model is verified through another set of measurements where reference signal received power (RSRP) levels inside the aircraft are measured. The results show that the proposed model closely matches the in-cabin RSRP measurements. Moreover, in order to enforce the distance between a user and an interfering resource, cell sectorization is employed in the multi-cell onboard system deployment. The proposed propagation model is used to find an optimum antenna orientation that minimizes the interference level among the neighbouring evolved nodeBs (eNBs). Once the optimum antenna deployment is obtained, comprehensive downlink performance evaluations of the multi-cell, multi-user onboard LTE-A system is carried out. Techniques that are proposed for LTE-A systems, namely enhanced inter-cell interference coordination (eICIC) and carrier aggregation (CA), are employed in the system analysis. Different numbers of eNBs, antenna mounting positions and scheduling policies are examined. A scheduling algorithm that provides a good tradeoff between fairness and system throughput is proposed. The results show that the downlink performance of the proposed onboard LTE-A system achieves not only 75% of the theoretical limits of the overall system throughput but also fair user data rate performance, irrespective of a passenger's seat location. In order to provide the seamless connectivity requirement of 5G systems, compatibility between the proposed onboard system deployment and the already deployed terrestrial networks is investigated. Simulation based analyses are carried out to investigate power leakage from the onboard systems while the aircraft is in the parked position on the apron. According to the regulations, the onboard system should not increase the noise level of the already deployed terrestrial system by 1 dB. Results show that the proposed onboard communication system can be operated while the aircraft is in the parked position on the apron without exceeding the 1 dB increase in the noise level of the already deployed terrestrial 4G network. Furthermore, handover parameters are obtained for different transmission power levels of both the terrestrial and onboard systems to make the transition from one system to another without interruption while a passenger boards or leaves the aircraft. Simulation and measurement based analyses show that when the RSRP level of the terrestrial system is below -65 dBm around the aircraft, a boarding passenger can be smoothly handed over to the onboard system and vice versa. Moreover, in order to trigger the handover process without interfering with the data transmission, a broadcast control channel (BCCH) power boosting feature is proposed for the in-cabin eNBs. Results show that employing the BCCH power boosting feature helps to trigger the handover process as soon as the passengers step on board the aircraft.
|
23 |
Evaluation of power consumption and trade-offs in 5G mobile communications networksAlhumaima, Raad January 2017 (has links)
In this thesis, components and parameters based power models (PMs) are produced to measure the power consumption (PC) of cloud radio access network (CRAN) architecture. In components PM, the power figure of each component within C-RAN is evaluated. After, this model is parametrised such that the computation complexity of each component is converted to a straightforward, but accurate method, called parameterised PM. This model compares cooling and total PC of traditional LTE architecture with C-RAN. This comparison considered different parameters such as, utilised bandwidth, number of antenna, base band units (BBUs) and remote radio heads (RRHs). This model draws about 33% reduction in power. Next, this PC model is updated to serve and exhibit the cost of integrating software defined networks (SDNs) with C-RAN. Alongside, modelling the power cost of the control plane units in the core network (CN), such as serving gateway (SGW), packet gateway (PGW) and mobility management entity (MME). Although there is power cost, the proposed model shows the directions to mitigate it. Consequently, a simplified PM is proposed for virtualisation based C-RAN. In this model, the power cost of server virtualisation by hosting several virtual machines (VMs) is shown, in a time and cost effective way. The total reduction in the PC was about 75%, due to short-cutting the number of active servers in the network. Alongside, the latency cost due to such technique is modelled. Finally, to enable efficient virtualisation technology, live migrating the VMs amongst the servers is vital. However, this advantageous situation is concurrent with VM's migration time and power cost. Therefore, a model is proposed to calculate the power cost of VM's live migration, and shows the effect of such decision upon the total PC of the network/C-RAN. The proposed work converts the complexity of other proposed PMs, to a simplified and costless method. Concurrently, the time cost is added to the imposed virtualisation's time cost to formulate the total delay expected prior to these techniques' execution.
|
24 |
Discovering Network Control Vulnerabilities and Policies in Evolving NetworksJermyn, Jill Louise January 2017 (has links)
The range and number of new applications and services are growing at an unprecedented rate. Computer networks need to be able to provide connectivity for these services and meet their constantly changing demands. This requires not only support of new network protocols and security requirements, but often architectural redesigns for long-term improvements to efficiency, speed, throughput, cost, and security. Networks are now facing a drastic increase in size and are required to carry a constantly growing amount of heterogeneous traffic. Unfortunately such dynamism greatly complicates security of not only the end nodes in the network, but also of the nodes of the network itself. To make matters worse, just as applications are being developed at faster and faster rates, attacks are becoming more pervasive and complex. Networks need to be able to understand the impact of these attacks and protect against them.
Network control devices, such as routers, firewalls, censorship devices, and base stations, are elements of the network that make decisions on how traffic is handled. Although network control devices are expected to act according to specifications, there can be various reasons why they do not in practice. Protocols could be flawed, ambiguous or incomplete, developers could introduce unintended bugs, or attackers may find vulnerabilities in the devices and exploit them. Malfunction could intentionally or unintentionally threaten the confidentiality, integrity, and availability of end nodes and the data that passes through the network. It can also impact the availability and performance of the control devices themselves and the security policies of the network. The fast-paced evolution and scalability of current and future networks create a dynamic environment for which it is difficult to develop automated tools for testing new protocols and components. At the same time, they make the function of such tools vital for discovering implementation flaws and protocol vulnerabilities as networks become larger and more complex, and as new and potentially unrefined architectures become adopted. This thesis will present the design, implementation, and evaluation of a set of tools designed for understanding implementation of network control nodes and how they react to changes in traffic characteristics as networks evolve. We will first introduce Firecycle, a test bed for analyzing the impact of large-scale attacks and Machine-to-Machine (M2M) traffic on the Long Term Evolution (LTE) network. We will then discuss Autosonda, a tool for automatically discovering rule implementation and finding triggering traffic features in censorship devices.
This thesis provides the following contributions:
1. The design, implementation, and evaluation of two tools to discover models of network control nodes in two scenarios of evolving networks, mobile network and censored internet
2. First existing test bed for analysis of large-scale attacks and impact of traffic scalability on LTE mobile networks
3. First existing test bed for LTE networks that can be scaled to arbitrary size and that deploys traffic models based on real traffic traces taken from a tier-1 operator
4. An analysis of traffic models of various categories of Internet of Things (IoT) devices
5. First study demonstrating the impact of M2M scalability and signaling overload on the packet core of LTE mobile networks
6. A specification for modeling of censorship device decision models
7. A means for automating the discovery of features utilized in censorship device decision models, comparison of these models, and their rule discovery
|
25 |
Uplink Channel Dependent Scheduling for Future Cellular SystemsJersenius, Kristina January 2007 (has links)
<p>One goal in the development of future cellular systems is to increase performance. Channel dependent scheduling can possibly contribute to a performance enhancement. It requires channel qualityinformation and uplink channel knowledge is often incomplete. This master thesis work compares channel dependent scheduling and channel independent scheduling for a Single Carrier Frequency Division Multiple Access-based uplink in time domain and time and frequencydomain assuming continuous channel quality information updates. It also evaluates different methods for providing channel quality information by investigating how the limited channel knowledge they supply affects the performance of channel dependent scheduling.</p><p>Single-cell simulations with perfect channel knowledge indicate small gains for channel dependent scheduling. Large gains are seen when performing frequency and time domain scheduling instead of only time domain scheduling. Limited channel knowledge causes performance loss for channel dependent scheduling. The performance is only slightly decreased if a method with sufficiently frequent providing of channel quality information updates is applied.</p><p>More realistic multi-cell simulations show large gains for channel dependent scheduling. It is possible that these results are influenced by link adaptation and scheduling problems due to non predictable interference when performing dynamic scheduling. In the comparison between channel dependent and channel independent scheduling the channel dependent scheduling can benefit from the fact that the selected channel dependent scheduling algorithms result in a more static scheduling than the selected channel independent scheduling algorithms do.</p>
|
26 |
Global dynamics of geosynchronous space debris with high area-to-mass ratiosValk, Stéphane 17 June 2008 (has links)
This Ph.D. thesis is devoted to the development of a specific semi-analytical algorithm especially well-suited to derive the long-term evolution of near geosynchronous space debris and based on the concept of mean orbital motion. In a first approach, the semi-analytical theory is concerned with the singularity issues arising for circular and equatorial orbits as well as with the geostationary resonance modeling. In a second part, motivated by the discovery of high area-to-mass ratios space debris in high altitude Earth's orbit (mostly near the geosynchronous region), the direct radiation pressure models are revisited and completed. Within this context, the main effects of the direct solar radiation pressure for the mid- and long-term evolution of both the eccentricity and the inclination vectors are analyzed through a well-suited model. Moreover, by means of a smart extension, the passage in the Earth's shadow is taken into account in the computations of the orbits. Finally, a further insight into the intrinsic stability of such space debris is performed, by means of a recent numerical technique (MEGNO) which is based on the concept of ``variational chaos indicator'.
|
27 |
Cross Layer Design for Video Streaming over 4G Networks Using SVCRadhakrishna, Rakesh 19 March 2012 (has links)
Fourth Generation (4G) cellular technology Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) offers high data rate capabilities to mobile users; and, operators are trying to deliver a true mobile broadband experience over LTE networks. Mobile TV and Video on Demand (VoD) are expected to be the main revenue generators in the near future [36] and efficient video streaming over wireless is the key to enabling this. 3GPP recommends the use of H.264 baseline profiles for all video based services in Third Generation (3G) Universal Mobile Telecommunication System (UMTS) networks. However, LTE networks need to support mobile devices with different display resolution requirements like small resolution mobile phones and high resolution laptops. Scalable Video Coding (SVC) is required to achieve this goal. Feasibility study of SVC for LTE is one of the main agenda of 3GPP Release10. SVC enhances H.264 with a set of new profiles and encoding tools that may be used to produce scalable bit streams. Efficient adaptation methods for SVC video transmission over LTE networks are proposed in this thesis. Advantages of SVC over H.264 are analyzed using real time use cases of mobile video streaming. Further, we study the cross layer adaptation and scheduling schemes for delivering SVC video streams most efficiently to the users in LTE networks in unicast and multicast transmissions. We propose SVC based video streaming scheme for unicast and multicast transmissions in the downlink direction, with dynamic adaptations and a scheduling scheme based on channel quality information from users. Simulation results indicate improved video quality for more number of users in the coverage area and efficient spectrum usage with the proposed methods.
|
28 |
Cross Layer Design for Video Streaming over 4G Networks Using SVCRadhakrishna, Rakesh 19 March 2012 (has links)
Fourth Generation (4G) cellular technology Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) offers high data rate capabilities to mobile users; and, operators are trying to deliver a true mobile broadband experience over LTE networks. Mobile TV and Video on Demand (VoD) are expected to be the main revenue generators in the near future [36] and efficient video streaming over wireless is the key to enabling this. 3GPP recommends the use of H.264 baseline profiles for all video based services in Third Generation (3G) Universal Mobile Telecommunication System (UMTS) networks. However, LTE networks need to support mobile devices with different display resolution requirements like small resolution mobile phones and high resolution laptops. Scalable Video Coding (SVC) is required to achieve this goal. Feasibility study of SVC for LTE is one of the main agenda of 3GPP Release10. SVC enhances H.264 with a set of new profiles and encoding tools that may be used to produce scalable bit streams. Efficient adaptation methods for SVC video transmission over LTE networks are proposed in this thesis. Advantages of SVC over H.264 are analyzed using real time use cases of mobile video streaming. Further, we study the cross layer adaptation and scheduling schemes for delivering SVC video streams most efficiently to the users in LTE networks in unicast and multicast transmissions. We propose SVC based video streaming scheme for unicast and multicast transmissions in the downlink direction, with dynamic adaptations and a scheduling scheme based on channel quality information from users. Simulation results indicate improved video quality for more number of users in the coverage area and efficient spectrum usage with the proposed methods.
|
29 |
Uplink Channel Dependent Scheduling for Future Cellular SystemsJersenius, Kristina January 2007 (has links)
One goal in the development of future cellular systems is to increase performance. Channel dependent scheduling can possibly contribute to a performance enhancement. It requires channel qualityinformation and uplink channel knowledge is often incomplete. This master thesis work compares channel dependent scheduling and channel independent scheduling for a Single Carrier Frequency Division Multiple Access-based uplink in time domain and time and frequencydomain assuming continuous channel quality information updates. It also evaluates different methods for providing channel quality information by investigating how the limited channel knowledge they supply affects the performance of channel dependent scheduling. Single-cell simulations with perfect channel knowledge indicate small gains for channel dependent scheduling. Large gains are seen when performing frequency and time domain scheduling instead of only time domain scheduling. Limited channel knowledge causes performance loss for channel dependent scheduling. The performance is only slightly decreased if a method with sufficiently frequent providing of channel quality information updates is applied. More realistic multi-cell simulations show large gains for channel dependent scheduling. It is possible that these results are influenced by link adaptation and scheduling problems due to non predictable interference when performing dynamic scheduling. In the comparison between channel dependent and channel independent scheduling the channel dependent scheduling can benefit from the fact that the selected channel dependent scheduling algorithms result in a more static scheduling than the selected channel independent scheduling algorithms do.
|
30 |
QoS-Aware Packet Scheduler for LTE Downlink Based on Packet Prediction MechanismTang, Chang-Lung 09 August 2011 (has links)
none
|
Page generated in 0.1166 seconds