• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Separation of CO2 using ultra-thin multi-layer polymeric membranes for compartmentalized fiber optic sensor applications

Davies, Benjamin 20 March 2014 (has links)
Carbon dioxide sequestration is one of many mitigation tools available to help reduce carbon dioxide emissions while other disposal/repurposing methods are being investigated. Geologic sequestration is the most stable option for long-term storage of carbon dioxide (CO2), with significant CO2 trapping occurring through mineralization within the first 20-50 years. A fiber optic based monitoring system has been proposed to provide real time concentrations of CO2 at various points throughout the geologic formation. The proposed sensor is sensitive to the refractive index (RI) of substances in direct contact with the sensing component. As RI is a measurement of light propagating through a bulk medium relative to light propagating through a vacuum, the extraction of the effects of any specific component of that medium to the RI remains very difficult. Therefore, a requirement for a selective barrier to be able to prevent confounding substances from being in contact with the sensor and specifically isolate CO2 is necessary. As such a method to evaluate the performance of the selective element of the sensor was investigated. Polybenzimidazole (PBI) and VTEC polyimide (PI) 1388 are high performance polymers with good selectivity for CO2 used in high temperature gas separations. These polymers were spin coated onto a glass substrate and cured to form ultra-thin (>10 μm) membranes for gas separation. At a range of pressures (0.14 –0.41 MPa) and a set temperature of 24.2±0.8 °C, intrinsic permeabilities to CO2 and nitrogen (N2) were investigated as they are the gases of highest prevalence in underground aquifers. Preliminary RI testing for proof of concept has yielded promising results when the sensor is exposed exclusively to CO2 or N2. However, the use of both PBI and VTEC PI in these trials resulted in CO2 selectivities of 0.72 to 0.87 and 0.33 to 0.63 respectively, for corresponding feed pressures of 0.14 to 0.41 MPa. This indicates that both of the polymers are more selective for N2 and should not be used in CO2 sensing applications as confounding gas permeants, specifically N2, will interfere with the sensing element. / Graduate / 0428 / 0495 / 0542 / ben.t.davies@gmail.com
12

Redes de período longo em fibras ópticas aplicadas ao sensoriamento de corrente elétrica em Vant’s

Delgado, Felipe de Souza 24 August 2017 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-10-02T19:31:50Z No. of bitstreams: 1 felipedesouzadelgado.pdf: 2621698 bytes, checksum: f2d2c40acc8fdf80a70c9f39aabc0cc9 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-10-09T19:46:37Z (GMT) No. of bitstreams: 1 felipedesouzadelgado.pdf: 2621698 bytes, checksum: f2d2c40acc8fdf80a70c9f39aabc0cc9 (MD5) / Made available in DSpace on 2017-10-09T19:46:37Z (GMT). No. of bitstreams: 1 felipedesouzadelgado.pdf: 2621698 bytes, checksum: f2d2c40acc8fdf80a70c9f39aabc0cc9 (MD5) Previous issue date: 2017-08-24 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esta dissertação apresenta a produção de redes de período longo em fibras ópticas por descargas de arcos elétricos e o seu uso em aplicações de sensoriamento de corrente em veículos aéreos não tripulados. Os aspectos teóricos fundamentais para o entendimento das redes de período longo são apresentados. Além disso, discutiu-se os diferentes tipos de acoplamentos de energia que podem ocorrer em uma rede de período longo e também, os mecanismos responsáveis pela formação dessas redes produzidas por descargas de arco elétrico. A fabricação de redes de período longo utilizando a técnica de arco elétrico foi descrita e o comportamento da perda dependente da polarização das redes produzidas foi investigado. Além disso, é apresentado um novo método para a produção de redes de período longo com perda dependente da polarização reduzida. Constatou-se que por meio de alterações no ângulo de incidência das descargas elétricas na fibra óptica em relação à um ponto de referência, é possível promediar os efeitos induzidos pontualmente por cada descarga de arco elétrico e assim, reduzir a perda dependente da polarização intrínseca dessas redes. Por fim, é apresentada a aplicação de uma rede produzida por arco elétrico combinada a um ímã de neodímio, compondo um novo dispositivo de sensoriamento para medir a corrente elétrica exigida pelos motores elétricos de um veículo aéreo não tripulado. / This dissertation presents the fabrication of long-period fiber gratings through electric arc discharges and their application in current sensing in unmanned aerial vehicles. The theoretical aspects of long-period gratings are presented. Besides, we discussed the different types of coupling that could occur in a long-period fiber grating, as well as the mechanisms responsible for the formation of the gratings produced by electric arc discharges. The manufacture process of the long-period gratings using the electric arc technique was described and the behavior of the polarization dependent loss of these gratings was investigated. In addition, a new method for the production of long period gratings with reduced polarization dependent loss is introduced. It has been found that by changing the incidence angle of the electric discharges in the optical fiber in relation to a reference point, it is possible to average the effects induced by each electric arc discharge and, therefore, reducing the intrinsic polarization dependent loss of these gratings. Finally, the application of a grating produced by electric arc combined with a neodymium permanent magnet is presented. This combination allows us to measure the electric current required by a motor of an unmanned aerial vehicle.
13

Polarization mode excitation in index-tailored optical fibers by acoustic long period gratings / Anregung von Polarisationsmoden in optischen Fasern mit angepasstem Brechzahlprofil durch langperiodische akustische Gitter

Zeh, Christoph 15 November 2013 (has links) (PDF)
The present work deals with the development and application of an acoustic long-period fiber grating (LPG) in conjunction with a special optical fiber (SF). The acoustic LPG converts selected optical modes of the SF. Some of these modes are characterized by complex, yet cylindrically symmetric polarization and intensity patterns. Therefore, they are the guided variant of so called cylindrical vector beams (CVBs). CVBs find applications in numerous fields of fundamental and applied optics. Here, an application to high-resolution light microscopy is demonstrated. The field distribution in the tight microscope focus is controlled by the LPG, which in turn creates the necessary polarization and intensity distribution for the microscope illumination. A gold nanoparticle of 30 nm diameter is used to probe the focal field with sub-wavelength resolution. The construction and test of the acoustic LPG are discussed in detail. A key component is the piezoelectric transducer that excites flexural acoustic waves in the SF, which are the origin of an optical mode conversion. A mode conversion efficiency of 85% was realized at 785 nm optical wavelength. The efficiency is, at present, mainly limited by the spectral positions and widths of the transducer’s acoustic resonances. The SF used with the LPG separates the propagation constants of the second-order polarization modes, so they can be individually excited and are less sensitive to distortions than in standard weakly-guiding fibers. The influence of geometrical parameters of the fiber core on the propagation constant separation and on the mode fields is studied numerically using the multiple multipole method. From the simulations, a simple mode coupling scheme is developed that provides a qualitative understanding of the experimental results achieved with the LPG. The refractive index profile of the fiber core was originally developed by Ramachandran et al. However, an important step of the present work is to reduce the SF’s core size to counteract the the appearance of higher-order modes at shorter wavelengths which would otherwise spoil the mode purity. Using the acoustic LPG in combination with the SF produces a versatile device to generate CVBs and other phase structures beams. This fiber-optical method offers beam profiles of high quality and achieves good directional stability of the emitted beam. Moreover, the device design is simple and can be realized at low cost. Future developments of the acoustic LPG will aim at applications to fiber-optical sensors and optical near-field microscopy. / Diese Arbeit behandelt die Entwicklung und Anwendung eines akustischen langperiodischen Fasergitters (LPG) in Verbindung mit einer optischen Spezialfaser (SF). Das akustische LPG wandelt ausgewählte optische Modi der SF um. Einige dieser Modi weisen eine komplexe, zylindersymmetrische Polarisations- und Intensitätsverteilung auf. Diese sind eine Form der so genannten zylindrischen Vektor-Strahlen (CVBs), welche in zahlreichen Gebieten der wissenschaftlichen und angewandten Optik zum Einsatz kommen. In dieser Arbeit wird eine Anwendung auf die hochauflösende Lichtmikroskopie demonstriert. Die fokale Feldverteilung wird dabei durch die Auswahl der vom LPG erzeugten Modi, welche zur Beleuchtung genutzt werden, eingestellt. Als Nachweis wird die entstehende laterale Feldverteilung mithilfe eines Goldpartikels (Durchmesser 30 Nanometer) vermessen. Aufbau und Test des akustischen LPGs werden im Detail besprochen. Eine wichtige Komponente ist ein piezoelektrischer Wandler, der akustische Biegewellen in der SF anregt. Diese sind die Ursache der Umwandlung optischer Modi. Die maximale Konversionseffizienz betrug 85% bei 785 nm (optischer) Wellenlänge. Die Effizienz ist derzeit hauptsächlich durch die Lage der akustischen Resonanzfrequenzen des Wandlers und deren Bandbreite begrenzt. Die benutzte SF spaltet die Ausbreitungskonstanten von Polarisationsmodi zweiter Ordnung auf, sodass diese individuell angeregt werden können und weniger anfällig gegen über Störungen der Faser sind, als das bei gewöhnlichen, schwach führenden Glasfasern der Fall ist. Das zu Grunde liegende Brechzahlprofil des Faserkerns wurde von Ramachandran et al. entwickelt. Für diese Arbeit wurde jedoch die Ausdehnung des Profils verkleinert – ein erster Schritt um Anwendungen bei kürzeren optischen Wellenlängen zu ermöglichen. Es werden numerische Simulationen mit der Methode der multiplen Multipole zur Berechnung der Modenfelder und den zugehörigen Propagationskonstanten vorgestellt. Diese zeigen u. a. den starken Einfluss von geometrischen Veränderungen des Faserkerns. Basierend auf den Simulationsergebnissen wird ein einfaches Kopplungsschema für die Modi entwickelt, welches ein qualitatives Verständnis der experimentellen Ergebnisse ermöglicht. In Kombination bilden die SF und das LPG ein vielseitiges Gerät zur Erzeugung von CVBs und anderen Strahlen mit komplexer Phasenstruktur. Die Methode besticht durch hohe Qualität des Strahlprofils, stabile Abstrahlrichtung, einfachen Aufbau, elektronische Steuerbarkeit und geringe Materialkosten. Zukünftige Weiterentwicklungen des akustischen LPGs zielen auf die Anwendung in faseroptischen Sensoren und in der optischen Nahfeldmikroskopie ab.
14

Polarization mode excitation in index-tailored optical fibers by acoustic long period gratings: Development and Application

Zeh, Christoph 05 November 2013 (has links)
The present work deals with the development and application of an acoustic long-period fiber grating (LPG) in conjunction with a special optical fiber (SF). The acoustic LPG converts selected optical modes of the SF. Some of these modes are characterized by complex, yet cylindrically symmetric polarization and intensity patterns. Therefore, they are the guided variant of so called cylindrical vector beams (CVBs). CVBs find applications in numerous fields of fundamental and applied optics. Here, an application to high-resolution light microscopy is demonstrated. The field distribution in the tight microscope focus is controlled by the LPG, which in turn creates the necessary polarization and intensity distribution for the microscope illumination. A gold nanoparticle of 30 nm diameter is used to probe the focal field with sub-wavelength resolution. The construction and test of the acoustic LPG are discussed in detail. A key component is the piezoelectric transducer that excites flexural acoustic waves in the SF, which are the origin of an optical mode conversion. A mode conversion efficiency of 85% was realized at 785 nm optical wavelength. The efficiency is, at present, mainly limited by the spectral positions and widths of the transducer’s acoustic resonances. The SF used with the LPG separates the propagation constants of the second-order polarization modes, so they can be individually excited and are less sensitive to distortions than in standard weakly-guiding fibers. The influence of geometrical parameters of the fiber core on the propagation constant separation and on the mode fields is studied numerically using the multiple multipole method. From the simulations, a simple mode coupling scheme is developed that provides a qualitative understanding of the experimental results achieved with the LPG. The refractive index profile of the fiber core was originally developed by Ramachandran et al. However, an important step of the present work is to reduce the SF’s core size to counteract the the appearance of higher-order modes at shorter wavelengths which would otherwise spoil the mode purity. Using the acoustic LPG in combination with the SF produces a versatile device to generate CVBs and other phase structures beams. This fiber-optical method offers beam profiles of high quality and achieves good directional stability of the emitted beam. Moreover, the device design is simple and can be realized at low cost. Future developments of the acoustic LPG will aim at applications to fiber-optical sensors and optical near-field microscopy.:Abstract / Kurzfassung iii Table of contents v 1 Introduction 1 2 Fundamentals of optical waveguides 5 2.1 Introduction 5 2.2 Maxwell’s equations and vector wave equations 5 2.3 Optical waveguides 7 2.3.1 Dielectric waveguides 7 2.3.2 Metallic waveguides 9 2.4 Numerical calculation of modes by the multiple multipole program 10 2.4.1 Representation of simulated mode fields 11 2.5 Overview of coupled mode theory 14 2.5.1 Coupled mode equations 14 2.5.2 Co-directional coupling 15 2.6 Summary and conclusions 16 3 Polarization control for fundamental and higher order modes 17 3.1 Introduction 17 3.2 Description of light polarization 18 3.2.1 Stokes parameters and the polarization ellipse 18 3.2.2 Polarization of light beams in free space 20 3.2.3 Polarization of light beams in optical fibers 21 3.3 Short overview of cylindrical vector beam generation 22 3.4 Excitation of cylindrical vector beams in optical fibers 27 3.4.1 Free-beam techniques 27 3.4.2 In-fiber techniques 29 3.5 Polarization control in optical fibers 30 3.5.1 Phase matching and the beat length 30 3.5.2 Polarization-maintaining single-mode fibers 32 3.5.3 Higher-order mode polarization-maintaining fibers 32 3.6 Summary and conclusions 34 4 Simulation of core-ring-fibers 36 4.1 Introduction 36 4.2 Model geometries for index-tailored optical fiber 37 4.2.1 Special fiber and fabrication 37 4.2.2 Elliptical core boundaries 39 4.2.3 Overview of the applied MMP Models 41 4.3 Simulation results for circular core geometry 43 4.3.1 Mode fields 43 4.3.2 Scaling of the core radii 43 4.3.3 Wavelength dependence 48 4.4 Simulation results for non-circular geometry 50 4.4.1 Mode fields 50 4.4.2 Effects of individual rotation angles 53 4.4.3 Wavelength dependence 56 4.5 Summary and conclusions 61 5 Long period fiber gratings 63 5.1 Introduction 63 5.2 Principle of long-period fiber gratings 64 5.2.1 Results from coupled mode theory 64 5.2.2 Types of long-period gratings 65 5.2.3 Properties of acoustic long-period fiber gratings 67 5.3 Acoustic long-period grating setup 68 5.3.1 Transducer 69 5.3.2 Mechanical coupling 72 5.3.3 Acoustic dispersion of an optical fiber 75 5.3.4 Optical setup 77 5.3.5 Comparison to other acoustic LPG geometries 81 5.4 Experimental results 82 5.4.1 Transmission spectra 82 5.4.2 Discussion of transmission results 88 5.4.3 Direct mode field observation 93 5.4.4 Discussion of mode field observations 97 5.4.5 Time behavior and grating amplitude modulation 99 5.5 Summary and conclusions 101 6 Application of higher order fiber modes for far-field microscopy 104 6.1 Introduction 104 6.2 Complex beams in high-resolution far-field microscopy 104 6.3 Theoretical considerations 106 6.4 Experimental details 111 6.5 Results 114 6.6 Discussion 118 6.7 Summary and conclusions 122 7 Summary and outlook 124 Acknowledgments 139 Publications related to this work 142 List of figures 144 List of tables 150 List of acronyms 151 / Diese Arbeit behandelt die Entwicklung und Anwendung eines akustischen langperiodischen Fasergitters (LPG) in Verbindung mit einer optischen Spezialfaser (SF). Das akustische LPG wandelt ausgewählte optische Modi der SF um. Einige dieser Modi weisen eine komplexe, zylindersymmetrische Polarisations- und Intensitätsverteilung auf. Diese sind eine Form der so genannten zylindrischen Vektor-Strahlen (CVBs), welche in zahlreichen Gebieten der wissenschaftlichen und angewandten Optik zum Einsatz kommen. In dieser Arbeit wird eine Anwendung auf die hochauflösende Lichtmikroskopie demonstriert. Die fokale Feldverteilung wird dabei durch die Auswahl der vom LPG erzeugten Modi, welche zur Beleuchtung genutzt werden, eingestellt. Als Nachweis wird die entstehende laterale Feldverteilung mithilfe eines Goldpartikels (Durchmesser 30 Nanometer) vermessen. Aufbau und Test des akustischen LPGs werden im Detail besprochen. Eine wichtige Komponente ist ein piezoelektrischer Wandler, der akustische Biegewellen in der SF anregt. Diese sind die Ursache der Umwandlung optischer Modi. Die maximale Konversionseffizienz betrug 85% bei 785 nm (optischer) Wellenlänge. Die Effizienz ist derzeit hauptsächlich durch die Lage der akustischen Resonanzfrequenzen des Wandlers und deren Bandbreite begrenzt. Die benutzte SF spaltet die Ausbreitungskonstanten von Polarisationsmodi zweiter Ordnung auf, sodass diese individuell angeregt werden können und weniger anfällig gegen über Störungen der Faser sind, als das bei gewöhnlichen, schwach führenden Glasfasern der Fall ist. Das zu Grunde liegende Brechzahlprofil des Faserkerns wurde von Ramachandran et al. entwickelt. Für diese Arbeit wurde jedoch die Ausdehnung des Profils verkleinert – ein erster Schritt um Anwendungen bei kürzeren optischen Wellenlängen zu ermöglichen. Es werden numerische Simulationen mit der Methode der multiplen Multipole zur Berechnung der Modenfelder und den zugehörigen Propagationskonstanten vorgestellt. Diese zeigen u. a. den starken Einfluss von geometrischen Veränderungen des Faserkerns. Basierend auf den Simulationsergebnissen wird ein einfaches Kopplungsschema für die Modi entwickelt, welches ein qualitatives Verständnis der experimentellen Ergebnisse ermöglicht. In Kombination bilden die SF und das LPG ein vielseitiges Gerät zur Erzeugung von CVBs und anderen Strahlen mit komplexer Phasenstruktur. Die Methode besticht durch hohe Qualität des Strahlprofils, stabile Abstrahlrichtung, einfachen Aufbau, elektronische Steuerbarkeit und geringe Materialkosten. Zukünftige Weiterentwicklungen des akustischen LPGs zielen auf die Anwendung in faseroptischen Sensoren und in der optischen Nahfeldmikroskopie ab.:Abstract / Kurzfassung iii Table of contents v 1 Introduction 1 2 Fundamentals of optical waveguides 5 2.1 Introduction 5 2.2 Maxwell’s equations and vector wave equations 5 2.3 Optical waveguides 7 2.3.1 Dielectric waveguides 7 2.3.2 Metallic waveguides 9 2.4 Numerical calculation of modes by the multiple multipole program 10 2.4.1 Representation of simulated mode fields 11 2.5 Overview of coupled mode theory 14 2.5.1 Coupled mode equations 14 2.5.2 Co-directional coupling 15 2.6 Summary and conclusions 16 3 Polarization control for fundamental and higher order modes 17 3.1 Introduction 17 3.2 Description of light polarization 18 3.2.1 Stokes parameters and the polarization ellipse 18 3.2.2 Polarization of light beams in free space 20 3.2.3 Polarization of light beams in optical fibers 21 3.3 Short overview of cylindrical vector beam generation 22 3.4 Excitation of cylindrical vector beams in optical fibers 27 3.4.1 Free-beam techniques 27 3.4.2 In-fiber techniques 29 3.5 Polarization control in optical fibers 30 3.5.1 Phase matching and the beat length 30 3.5.2 Polarization-maintaining single-mode fibers 32 3.5.3 Higher-order mode polarization-maintaining fibers 32 3.6 Summary and conclusions 34 4 Simulation of core-ring-fibers 36 4.1 Introduction 36 4.2 Model geometries for index-tailored optical fiber 37 4.2.1 Special fiber and fabrication 37 4.2.2 Elliptical core boundaries 39 4.2.3 Overview of the applied MMP Models 41 4.3 Simulation results for circular core geometry 43 4.3.1 Mode fields 43 4.3.2 Scaling of the core radii 43 4.3.3 Wavelength dependence 48 4.4 Simulation results for non-circular geometry 50 4.4.1 Mode fields 50 4.4.2 Effects of individual rotation angles 53 4.4.3 Wavelength dependence 56 4.5 Summary and conclusions 61 5 Long period fiber gratings 63 5.1 Introduction 63 5.2 Principle of long-period fiber gratings 64 5.2.1 Results from coupled mode theory 64 5.2.2 Types of long-period gratings 65 5.2.3 Properties of acoustic long-period fiber gratings 67 5.3 Acoustic long-period grating setup 68 5.3.1 Transducer 69 5.3.2 Mechanical coupling 72 5.3.3 Acoustic dispersion of an optical fiber 75 5.3.4 Optical setup 77 5.3.5 Comparison to other acoustic LPG geometries 81 5.4 Experimental results 82 5.4.1 Transmission spectra 82 5.4.2 Discussion of transmission results 88 5.4.3 Direct mode field observation 93 5.4.4 Discussion of mode field observations 97 5.4.5 Time behavior and grating amplitude modulation 99 5.5 Summary and conclusions 101 6 Application of higher order fiber modes for far-field microscopy 104 6.1 Introduction 104 6.2 Complex beams in high-resolution far-field microscopy 104 6.3 Theoretical considerations 106 6.4 Experimental details 111 6.5 Results 114 6.6 Discussion 118 6.7 Summary and conclusions 122 7 Summary and outlook 124 Acknowledgments 139 Publications related to this work 142 List of figures 144 List of tables 150 List of acronyms 151

Page generated in 0.1027 seconds