• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of induction stirred ladles

Pal, Mayur January 2012 (has links)
Over the years numerous computational fluid dynamics models have been developed in order to study the fluid flow in gas and induction stirred ladles. These models are used to gain insight in the industrial processes used in ladle treatment of steel. A unified model of an induction stirred Ladle in two and three dimensions is presented. Induction stirring of molten steel is a coupled multi-physics phenomena involving electromagnetic and fluid flow. Models presented in this thesis gives a more accurate description of the real stirring conditions and flow pattern, by taking into account the multi-physics behavior of the induction stirring process in an induction stirred ladle. This thesis presents a formulation of coupled electromagnetic and fluid flow equations. The coupled electromagnetic and fluid flow equations are solved using the finite element method in two and three-dimensions. The simulation model is used to predict values of steel velocities and magnetic flux density. The simulation model is also used to predict the effect of increased current density on flow velocity. Magnetic flux density values obtained from the model are verified against experimental values. / QC 20120615
2

Vermeidungsstrategien fluiddynamischer Effekte beim Einsatz von Schnellerwärmungstechnologien in der Warmumformung

Opitz, Tobias 20 January 2021 (has links)
Aufgrund fluiddynamischer Effekte bei der Schnellerwärmung für die Warmumformung wird die Applikation der Technologie erschwert. Die vorliegende Arbeit thematisiert diesen Effekt und evaluiert die Triebkräfte sowohl numerisch als auch im Experiment. Aufbauend darauf werden Vermeidungsstrategien aufgezeigt und experimentell validiert um eine Verschiebung der Beschichtung zu verhindern. Es können insbesondere die temperatursensitive Marangonikraft als auch die magnethydrodynamische Wirkung der Lorentzkraft bei einer induktiven Erwärmung als Haupttriebkräfte identifiziert werden, die sich aufgrund identischer Kraftvektorrichtungen überlagern und verstärken. Es hat sich gezeigt, dass für den vorliegenden Fall einer 20-30 μm dünnen AlSi-Beschichtung die Marangonikraft gegenüber der Lorentzkraft um einen Faktor von mindestens 68 überwiegt. Ein vergleichbarer Effekt ist auch bei konduktiver Erwärmung zu beobachten. Hinsichtlich möglicher Vermeidungsstrategien einer globalen Beschichtungsverschiebung bietet die Applikation von lokalen Flussbarrieren mittels Laser, Induktion oder Walztexturierung, sowie das Vermeiden einer freien Flüssigkeitsoberfläche durch Aufbringen einer Zusatzbeschichtung, das größte Potential. In der zweiten Versionierung der Dissertationsschrift wurde auf S. IV im Vorwort, sowie auf S.72, Kapitel 4.2 eine ergänzende Nennung eines Instituts und Kooperationspartners hinzugefügt. / The application of fast heating technologies for hot forming is hindered by fluiddynamic effects and a resulting coating shift. Present thesis investigates this effect to evaluate the driving forces numerically as well as experimentally. Based on this evaluation, strategies are developed and investigated to avoid a global displacement of the AlSi-coating. In case of inductive fast heating the main driving force is represented by a superposition of Lorentzian forces as well as surface tension related Marangoni forces with a force vector pointing from hot to cold regions on the blank. The numerical evaluation shows that in case of 20-30 μm thin layers of AlSi the Marangoni force is at least 68 times higher than the Lorentz force and therefore represents the main driving force. A comparable effect is observable in case of conduction heating. Local flow barriers realized by Laser, inductive heating or texturing as well as the avoidance of a free liquid-surface due to application of additional coating layers show huge potential to prevent a global coating flow.
3

Vermeidungsstrategien fluiddynamischer Effekte beim Einsatz von Schnellerwärmungstechnologien in der Warmumformung

Opitz, Tobias 05 September 2018 (has links)
Aufgrund fluiddynamischer Effekte bei der Schnellerwärmung für die Warmumformung wird die Applikation der Technologie erschwert. Die vorliegende Arbeit thematisiert diesen Effekt und evaluiert die Triebkräfte sowohl numerisch als auch im Experiment. Aufbauend darauf werden Vermeidungsstrategien aufgezeigt und experimentell validiert um eine Verschiebung der Beschichtung zu verhindern. Es können insbesondere die temperatursensitive Marangonikraft als auch die magnethydrodynamische Wirkung der Lorentzkraft bei einer induktiven Erwärmung als Haupttriebkräfte identifiziert werden, die sich aufgrund identischer Kraftvektorrichtungen überlagern und verstärken. Es hat sich gezeigt, dass für den vorliegenden Fall einer 20-30 μm dünnen AlSi-Beschichtung die Marangonikraft gegenüber der Lorentzkraft um einen Faktor von mindestens 68 überwiegt. Ein vergleichbarer Effekt ist auch bei konduktiver Erwärmung zu beobachten. Hinsichtlich möglicher Vermeidungsstrategien einer globalen Beschichtungsverschiebung bietet die Applikation von lokalen Flussbarrieren mittels Laser, Induktion oder Walztexturierung, sowie das Vermeiden einer freien Flüssigkeitsoberfläche durch Aufbringen einer Zusatzbeschichtung, das größte Potential. / The application of fast heating technologies for hot forming is hindered by fluiddynamic effects and a resulting coating shift. Present thesis investigates this effect to evaluate the driving forces numerically as well as experimentally. Based on this evaluation, strategies are developed and investigated to avoid a global displacement of the AlSi-coating. In case of inductive fast heating the main driving force is represented by a superposition of Lorentzian forces as well as surface tension related Marangoni forces with a force vector pointing from hot to cold regions on the blank. The numerical evaluation shows that in case of 20-30 μm thin layers of AlSi the Marangoni force is at least 68 times higher than the Lorentz force and therefore represents the main driving force. A comparable effect is observable in case of conduction heating. Local flow barriers realized by Laser, inductive heating or texturing as well as the avoidance of a free liquid-surface due to application of additional coating layers show huge potential to prevent a global coating flow.

Page generated in 0.0693 seconds