• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of the anholonomic nature of the rotating Lorentz transformation with applications to electrodynamics /

Corum, James Frederick January 1974 (has links)
No description available.
2

The relativistic foundations of synchrotron radiation

Margaritondo, Giorgio, Rafelski, Johann 20 June 2017 (has links)
Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.
3

PROPAGATION OF EN-ROUTE AIRCRAFT NOISE

Yiming Wang (8028554) 25 November 2019 (has links)
The prediction of the noise generated by en-route aircraft is gradually gaining in importance as the number of aircraft increases over the last few decades. While the studies of outdoor sound propagation have been focused on near ground propagation, the case when the sound source is high above the ground has not attracted much attention. At the same time there has been a lack of high-quality aircraft acoustic validation data sets that contain detailed acoustic, meteorology, and source-receiver position data. The DISCOVER-AQ data set, which was collected by Volpe in support of the Federal Aviation Administration (FAA), has greatly helped with studying the directivity and the Doppler effect in the comparison between simulation results and measurements. <div><br>To provide a more accurate prediction of en-route aircraft noise, we derived the analytic asymptotic solution of the sound field above a non-locally reacting ground due to a moving point source and a line source using the methods of the steepest descent and a Lorentz transform. The model predicts a much more accurate result for sound field above "soft" grounds, such as a snow-covered ground and sand-covered ground. At the same time, we derived a fast numerical algorithm based on Levin’s collocation for the prediction of the sound field in the presence of a temperature gradient, which can be applied to a wide range of acoustic problems involving integration. The achievements recorded in this thesis can be used to predict the sound field generated by aircraft, trains, and vehicles with a subsonic moving speed. In addition,<br>the model can be used for detection and design of moving sound source. <br></div>
4

Entanglement In The Relativistic Quantum Mechanics

Yakaboylu, Enderalp 01 February 2010 (has links) (PDF)
In this thesis, entanglement under fully relativistic settings are discussed. The thesis starts with a brief review of the relativistic quantum mechanics. In order to describe the effects of Lorentz transformations on the entangled states, quantum mechanics and special relativity are merged by construction of the unitary irreducible representations of Poincar&eacute / group on the infinite dimensional Hilbert space of state vectors. In this framework, the issue of finding the unitary irreducible representations of Poincar&eacute / group is reduced to that of the little group. Wigner rotation for the massive particles plays a crucial role due to its effect on the spin polarization directions. Furthermore, the physical requirements for constructing the correct relativistic spin operator is also studied. Then, the entanglement and Bell type inequalities are reviewed. The special attention has been devoted to two historical papers, by EPR in 1935 and by J.S. Bell in 1964. The main part of the thesis is based on the Lorentz transformation of the Bell states and the Bell inequalities on these transformed states. It is shown that entanglement is a Lorentz invariant quantity. That is, no inertial observer can see the entangled state as a separable one. However, it was shown that the Bell inequality may be satisfied for the Wigner angle dependent transformed entangled states. Since the Wigner rotation changes the spin polarization direction with the increased velocity, initial dichotomous operators can satisfy the Bell inequality for those states. By choosing the dichotomous operators taking into consideration the Wigner angle, it is always possible to show that Bell type inequalities can be violated for the transformed entangled states.
5

Une analyse de la relation entre les mécaniques classique et relativiste

Ouellette, Pierre 01 1900 (has links)
Notre thèse étudie la relation entre les mécaniques classique et relativiste. Il est généralement supposé, à partir de l’hypothèse des petites vitesses, que la mécanique classique correspond à la mécanique relativiste dans les cas où la vitesse des objets est petite par rapport à la vitesse de la lumière. Cette position nous semble inadéquate pour la simple raison que la mécanique classique ne peut être restreinte au seule domaine des petites vitesses. Nous proposons l’hypothèse que les deux mécaniques ont une structure commune et que chacune se distingue sous certaines conditions. Pour appuyer cette hypothèse, nous proposons une axiomatisation de la mécanique suffisamment générale pour servir de structure commune aux mécaniques classique et relativiste. Cette axiomatisation comporte une théorie de la relativité qui précise comment les quantités relatives sont reliées entre elles lorsque déterminées par rapport à différents référentiels, et les lois du mouvement qui précisent comment les forces exercées sur un objet détermine son mouvement. Cette mécanique générale est déterminée à deux constantes près et c’est en déterminant la valeur de ces constantes qu’apparaît le bris de la structure commune qui génère la mécanique classique d’une part et la mécanique relativiste d’autre part. / Our thesis studies the relationship between classical and relativistic mechanics. It is generally assumed, based on the assumption of small velocities, that classical mechanics corresponds to relativistic mechanics in cases where the speed of objects is small compared to the speed of light. This position seems inadequate to us, for the simple reason that classical mechanics cannot be restricted to the realm of small velocities alone. We propose the hypothesis that the two mechanics have a common structure, and that each can be distinguished under certain conditions. To support this hypothesis, we propose an axiomatization of mechanics that is sufficiently general to serve as a common structure for both classical and relativistic mechanics. This axiomatization includes a theory of relativity that specifies how relative quantities are related to each other when determined with respect to different reference frames, and laws of motion that specify how forces exerted on an object determine its motion. This general mechanics is determined to within two constants, and it is by determining the value of these constants that the common structure that generates classical mechanics on the one hand and relativistic mechanics on the other is broken down.

Page generated in 0.1823 seconds