Spelling suggestions: "subject:"cow coherence interferometry"" "subject:"cow coherence enterferometry""
1 |
Novel Optical Sensors for High Temperature Measurement in Harsh EnvironmentsZhang, Yibing 29 July 2003 (has links)
Accurate measurement of temperature is essential for the safe and efficient operation and control of a vast range of industrial processes. Many of these processes involve harsh environments, such as high temperature, high pressure, chemical corrosion, toxicity, strong electromagnetic interference, and high-energy radiation exposure. These extreme physical conditions often prevent conventional temperature sensors from being used or make them difficult to use. Novel sensor systems should not only provide accurate and reliable temperature measurements, but also survive the harsh environments through proper fabrication material selections and mechanical structure designs.
This dissertation presents detailed research work on the design, modeling, implementation, analysis, and performance evaluation of novel optical high temperature sensors suitable for harsh environment applications. For the first time to our knowledge, an optical temperature sensor based on the broadband polarimetric differential interferometric (BPDI) technology is proposed and tested using single crystal sapphire material. With a simple mechanically structured sensing probe, in conjunction with an optical spectrum-coded interferometric signal processing technique, the proposed single crystal sapphire optical sensor can measure high temperature up to 1600 oC in the harsh environments with high accuracy, corrosion resistance, and long-term measurement stability. Based on the successfully demonstrated sensor prototype in the laboratory, we are confident of the next research step on sensor optimization and scale-up for full field implementations. The goal for this research has been to bring this temperature sensor to a level where it will become commercially viable for harsh environment applications associated with industries. / Ph. D.
|
2 |
Improvements to Whole Lens Reconstruction for Saline Submerged Soft Contact LensesGuido, Christopher James January 2016 (has links)
A method for measuring the thickness and surface profiles of soft contact lenses while submerged in a saline solution has been implemented utilizing a low coherence Twyman-Green Interferometer. Although the original measurements demonstrated that features on the contact lens surfaces could be accurately determined, it was believed that the layout of the system also induced surface profile distortions. A new opto-mechanical layout has been implemented which eliminates many of these low frequency distortions. Improvements to the original phase unwrapping algorithms have also been developed to overcome the low visibility output inherent to the measurement allowing for a more complete analysis of the two surfaces of a contact lens.
|
3 |
Development of a Fourier Domain Low Coherence Interferometry Optical System for Applications in Early Cancer DetectionGraf, Robert Nicholas January 2009 (has links)
<p>Cancer is a disease that affects millions of people each year. While methods for the prevention and treatment of the disease continue to advance, the early detection of precancerous development remains a key factor in reducing mortality and morbidity among patients. The current gold standard for cancer detection is the systematic biopsy. While this method has been used for decades, it is not without limitations. Fortunately, optical detection of cancer techniques are particularly well suited to overcome these limitations. This dissertation chronicles the development of one such technique called Fourier domain low coherence interferometry (fLCI). </p><p>The presented work first describes a detailed analysis of temporal and spatial coherence. The study shows that temporal coherence information in time frequency distributions contains valuable structural information about experimental samples. Additionally, the study of spatial coherence demonstrates the necessity of spatial resolution in white light interferometry systems. The coherence analysis also leads to the development of a new data processing technique that generates depth resolved spectroscopic information with simultaneously high depth and spectral resolution. </p><p>The development of two new fLCI optical systems is also presented. These systems are used to complete a series of controlled experiments validating the theoretical basis and functionality of the fLCI system and processing methods. First, the imaging capabilities of the fLCI system are validated through scattering standard experiments and animal tissue imaging. Next, the new processing method is validated by a series of absorption phantom experiments. Additionally, the nuclear sizing capabilities of the fLCI technique are validated by a study measuring the nuclear morphology of in vitro cell monolayers.</p><p>The validation experiments set the stage for two animal studies: an initial, pilot study and a complete animal trial. The results of these animal studies show that fLCI can distinguish between normal and dyplastic epithelial tissue with high sensitivity and specificity. The results of the work presented in this dissertation show that fLCI has great potential to develop into an effective method for early cancer detection.</p> / Dissertation
|
4 |
Zpracování signálů v interferometrii nízké koherence / Signal processing in low-coherence interferometryNovotný, Peter January 2011 (has links)
This diploma thesis deals with the algorithms for signal processing in a field of a low-coherence interferometry. The introductory part is devoted to the basic principle of the low-coherence interferometry and to presenting its field of applications. The second part contains a list of selected algorithms supplemented by a description of their functionality. The procedure of experimental measurement of known surface with Michelson interferometer is described in the third part and the results obtained for particular algorithms are presented. Finally, algorithms are compared on the basis of measurement results.
|
5 |
Using Low-Coherence Interferometry to Monitor Cell Invasion in an in-vitro Model SystemDavoudi Nasab, Behnaz 01 January 2017 (has links)
In an optically random system, such as naturally occurring and man-made media, light undergoes pronounced multiple scattering. This phenomenon has shown a remarkable potential in characterizing complex materials. In this regime, scattering occurs from each individual center of the scattering and independent scattering events lead to multiple light scattering. This phenomenon is often described as a random walk of photons and can be modeled in terms of a diffusion equation based on the radiative transfer theory. In this thesis, we used optical path-length spectroscopy (OPS), which is an experimental method to obtain the path-length probability density of the propagating light in multiple scattering media, with a low-coherence optical field to investigate the distribution of photon path lengths in a skin cell model system. This method is capable of measuring the transport mean free path of light in a highly scattering medium and depth-resolved profiles of the backscattered light. Our OPS experimental configuration is based on a fiber-optic Michelson interferometer geometry using single mode optical fibers. We performed OPS based on low-coherence interferometry (LCI) on three-dimensional organotypic models of esophageal cell invasion by measuring the optical path-length distribution of backscattered light in normal and invasive conditions. The optical path-length distribution of light waves inside the cell samples provides information on how a change in the extracellular matrix affects invasiveness of the esophageal cells and induction of signaling pathways. Also, we demonstrated the compatibility to study the structural changes during a two-week period for in vitro cell samples.
|
6 |
Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior EyeDhalla, Al-Hafeez Zahir January 2012 (has links)
<p>Optical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use.</p><p>The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment.</p><p>In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.</p> / Dissertation
|
7 |
Nejistoty interferometrických měření / Uncertainties in interferometric measurementsKočí, Radek January 2014 (has links)
This diploma thesis deals with uncertainties of interferometric measurements and methods for their evaluation. In the theoretical part of the thesis, are described interferometers and interferometric measurement techniques. Furthermore, there is presented process of determining the measurement uncertainty using methods GUM and Monte Carlo. In the practical part of the thesis, there are these two methods are used for qualification of measurement uncertainty calculated for the specific interferometer.
|
8 |
System Design And Optimization Of Optical Coherence TomographyAkcay, Avni Ceyhun 01 January 2005 (has links)
Optical coherence imaging, including tomography (OCT) and microscopy (OCM), has been a growing research field in biomedical optical imaging in the last decade. In this imaging modality, a broadband light source, thus of short temporal coherence length, is used to perform imaging via interferometry. A challenge in optical coherence imaging, as in any imaging system towards biomedical diagnosis, is the quantification of image quality and optimization of the system components, both a primary focus of this research. We concentrated our efforts on the optimization of the imaging system from two main standpoints: axial point spread function (PSF) and practical steps towards compact low-cost solutions. Up to recently, the criteria for the quality of a system was based on speed of imaging, sensitivity, and particularly axial resolution estimated solely from the full-width at half-maximum (FWHM) of the axial PSF with the common practice of assuming a Gaussian source power spectrum. As part of our work to quantify axial resolution we first brought forth two more metrics unlike FWHM, which accounted for side lobes in the axial PSF caused by irregularities in the shape of the source power spectrum, such as spectral dips. Subsequently, we presented a method where the axial PSF was significantly optimized by suppressing the side lobes occurring because of the irregular shape of the source power spectrum. The optimization was performed through optically shaping the source power spectrum via a programmable spectral shaper, which consequentially led to suppression of spurious structures in the images of a layered specimen. The superiority of the demonstrated approach was in performing reshaping before imaging, thus eliminating the need for post-data acquisition digital signal processing. Importantly, towards the optimization and objective image quality assessment in optical coherence imaging, the impact of source spectral shaping was further analyzed in a task-based assessment method based on statistical decision theory. Two classification tasks, a signal-detection task and a resolution task, were investigated. Results showed that reshaping the source power spectrum was a benefit essentially to the resolution task, as opposed to both the detection and resolution tasks, and the importance of the specimen local variations in index of refraction on the resolution task was demonstrated. Finally, towards the optimization of OCT and OCM for use in clinical settings, we analyzed the detection electronics stage, which is a crucial component of the system that is designed to capture extremely weak interferometric signals in biomedical and biological imaging applications. We designed and tested detection electronics to achieve a compact and low-cost solution for portable imaging units and demonstrated that the design provided an equivalent performance to the commercial lock-in amplifier considering the system sensitivity obtained with both detection schemes.
|
9 |
A time domain optical coherence tomograph for laboratory investigations on phantoms and human skin / Utveckling av en tidsupplöst optisk koherenstomograf för undersökning av fantom och hudFreiberger, Manuel January 2005 (has links)
<p>Optical coherence tomography is an imaging modality with an outstanding resolution. During the project, a time domain OCT system based on a Michelson fibre interferometer was implemented and put into operation. A super-luminescent diode with a centre wavelength of 1295nm and a bandwidth of 45nm was selected as light source and a linear variable delay line as reference. Basic tests were made on phantoms constructed of filter foils and on gel-like agar slices with optical properties similar to human tissue. It was shown that the achievable resolution was at least 36um and can be increased. The system can easily be enhanced to create two-dimensional images.</p> / <p>Optische Kohärenztomographie ist ein bildgebendes Verfahren mit einer hervorragenden räumlichen Auflösung. Im Laufe des Projekts wurde ein OCT-System basierend auf einem faseroptischen Michelson-Interferometer implementiert und in Betrieb genommen. Als Lichtquelle wurde eine Superlumineszenzdiode mit einer Mittenwellenlänge von 1295nm und einer Bandbreite von 45nm gewählt. Eine variable optische Verzögerungsleitung diente als Referenz. Erste Messungen an Filterfolien und gelähnlichen Agarphantomen, die die optischen Eigenschaften von menschlichem Gewebe nachbildeten, lieferten eine räumliche Auflösung von mindestens 36um. Durch die modulare Bauweise ist das System leicht für zweidimensionale Aufnahmen erweiterbar.</p>
|
10 |
A time domain optical coherence tomograph for laboratory investigations on phantoms and human skin / Utveckling av en tidsupplöst optisk koherenstomograf för undersökning av fantom och hudFreiberger, Manuel January 2005 (has links)
Optical coherence tomography is an imaging modality with an outstanding resolution. During the project, a time domain OCT system based on a Michelson fibre interferometer was implemented and put into operation. A super-luminescent diode with a centre wavelength of 1295nm and a bandwidth of 45nm was selected as light source and a linear variable delay line as reference. Basic tests were made on phantoms constructed of filter foils and on gel-like agar slices with optical properties similar to human tissue. It was shown that the achievable resolution was at least 36um and can be increased. The system can easily be enhanced to create two-dimensional images. / Optische Kohärenztomographie ist ein bildgebendes Verfahren mit einer hervorragenden räumlichen Auflösung. Im Laufe des Projekts wurde ein OCT-System basierend auf einem faseroptischen Michelson-Interferometer implementiert und in Betrieb genommen. Als Lichtquelle wurde eine Superlumineszenzdiode mit einer Mittenwellenlänge von 1295nm und einer Bandbreite von 45nm gewählt. Eine variable optische Verzögerungsleitung diente als Referenz. Erste Messungen an Filterfolien und gelähnlichen Agarphantomen, die die optischen Eigenschaften von menschlichem Gewebe nachbildeten, lieferten eine räumliche Auflösung von mindestens 36um. Durch die modulare Bauweise ist das System leicht für zweidimensionale Aufnahmen erweiterbar.
|
Page generated in 0.0987 seconds