• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of flow through cylindrical packed beds with small cylinder diameter to particle diameter ratios / Wian Johannes Stephanus van der Merwe

Van der Merwe, Wian Johannes Stephanus January 2014 (has links)
The wall effect is known to present difficulties when attempting to predict the pressure drop over randomly packed beds. The Nuclear Safety Standard Commission, “Kerntechnischer Auss-chuss" (KTA), made considerable efforts to develop an equation which predicts the pressure drop over cylindrical randomly packed beds consisting of mono-sized spheres. The KTA was able to estimate a limiting line, which defines the region for which the wall effect is negligible, however the theoretical basis for this line is unclear. The goal of this investigation was to determine the validity of the KTA limiting line, using an explicit approach. Packed beds were generated using Discrete Element Modelling (DEM), and the flow through the beds simulated using Computational Fluid Dynamics (CFD). STAR-CCM+R was used for both DEM and CFD operations, and the methods developed for this explicit approach were validated with empirical data. The KTA correlation predictions for friction factors were com- pared with the CFD results, as well as the predictions from a few other correlations. The KTA correlation predictions for friction factors did not correspond well with the CFD results at low aspect ratios and low modified Reynolds numbers, due to the influence of the wall effect. The KTA limiting line was found to be valid, but not exact. A new limiting line for the KTA correlation was suggested, however the new limiting line improved little on the existing line and was the result of some major assumptions. In order to improve the determination of the position of the KTA limiting line further, criteria need to be established which determine how small the error in predicted friction factor must be before the KTA correlation can be accepted as accurate. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
2

Analysis of flow through cylindrical packed beds with small cylinder diameter to particle diameter ratios / Wian Johannes Stephanus van der Merwe

Van der Merwe, Wian Johannes Stephanus January 2014 (has links)
The wall effect is known to present difficulties when attempting to predict the pressure drop over randomly packed beds. The Nuclear Safety Standard Commission, “Kerntechnischer Auss-chuss" (KTA), made considerable efforts to develop an equation which predicts the pressure drop over cylindrical randomly packed beds consisting of mono-sized spheres. The KTA was able to estimate a limiting line, which defines the region for which the wall effect is negligible, however the theoretical basis for this line is unclear. The goal of this investigation was to determine the validity of the KTA limiting line, using an explicit approach. Packed beds were generated using Discrete Element Modelling (DEM), and the flow through the beds simulated using Computational Fluid Dynamics (CFD). STAR-CCM+R was used for both DEM and CFD operations, and the methods developed for this explicit approach were validated with empirical data. The KTA correlation predictions for friction factors were com- pared with the CFD results, as well as the predictions from a few other correlations. The KTA correlation predictions for friction factors did not correspond well with the CFD results at low aspect ratios and low modified Reynolds numbers, due to the influence of the wall effect. The KTA limiting line was found to be valid, but not exact. A new limiting line for the KTA correlation was suggested, however the new limiting line improved little on the existing line and was the result of some major assumptions. In order to improve the determination of the position of the KTA limiting line further, criteria need to be established which determine how small the error in predicted friction factor must be before the KTA correlation can be accepted as accurate. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014

Page generated in 0.096 seconds