• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 59
  • 32
  • 18
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 368
  • 368
  • 118
  • 82
  • 82
  • 69
  • 53
  • 52
  • 52
  • 51
  • 50
  • 48
  • 47
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A study of DNA mutations in LDL receptor gene of Chinese patients with familial hypercholesterolaemia /

Wong, Kwok-kit, Sunny. January 1997 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaf 93-104).
52

Microglial LRP1 modulates JNK activation a signaling cascade that also regulates apolipoprotein E levels /

Pocivavsek, Ana. January 2009 (has links)
Thesis (Ph.D.)--Georgetown University, 2009. / Includes bibliographical references.
53

Einfluss von Antioxidantien auf die Oxidation von Low-density-Lipoproteinen (LDL)

Yeomans, Vera. January 2002 (has links) (PDF)
München, Techn. Univ., Diss., 2002.
54

Untersuchungen zur LDL-Rezeptoraktivität des Karpfen (Cyprinus carpio L.)

Lobemeier, Martin Landolf. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Kiel.
55

Efeito da imunização passiva com fragmentos variáveis de cadeia única anti-LDL eletronegativa na aterosclerose experimental / Passive immunization effect with anti-electronegative LDL single chain fragments variable in experimental atherosclerosis

Marcela Frota Cavalcante 04 October 2012 (has links)
A aterosclerose é uma doença crônico-inflamatória multifatorial com o envolvimento do sistema imunológico, sendo o resultado da interação de diferentes elementos celulares. A lipoproteína de baixa densidade eletronegativa [LDL(-)], capaz de induzir o acúmulo de ésteres de colesterol em macrófagos e a subsequente formação de células espumosas, desempenha um papel-chave na doença. Anticorpos recombinantes têm sido gerados nas últimas décadas, como o scFv (single chain fragment variable), com o intuito de serem utilizados como uma novas alternativas de prevenção para o surgimento da lesão. Diante do papel da LDL(-) na aterosclerose, este projeto avaliou o efeito da imunização passiva de camundongos LDLr-/-- com scFv anti-LDL(-) em solução e scFv anti-LDL(-) conjugado a nanocápsulas, em relação ao desenvolvimento e progressão da aterosclerose. Após obtenção do scFv e sua conjugação à nanocápsulas (NC-scFv), ensaios in vitro determinaram a diminuição da captação de LDL(-) em macrófagos tratados com o scFv 2C7 anti-LDL(-) em solução. No entanto, o tratamento com NC-scFv promoveu o aumento da internalização de LDL(-) em relação ao controle, possivelmente por um mecanismo de endocitose mediada por receptor específico. Estudos in vivo determinaram que camundongos LDLr-/- com idade entre 2 e 3 meses tratados com o scFv em solução apresentaram menor área de lesão aterosclerótica (p<0,05) quando comparados ao controle e que animais com 3 a 4 meses de idade tratados com NC-scFv demonstraram uma tendência à diminuição do mesmo parâmetro. Na análise da expressão de proteínas por imunohistoquímica, ambos os grupos tratados com scFv 2C7 anti-LDL(-) em solução e NC-scFv demostraram redução significativa da expressão dos receptores CD14 e TLR-4 no local da lesão. Esse achado tem grande importância, uma vez que dados da literatura apresentam ambos os receptores como possíveis candidatos ao reconhecimento da LDL(-). Diante dos dados obtidos, o estudo evidenciou a eficácia do scFv 2C7 anti-LDL(-) em solução e da formulação NC-scFv no contexto da aterosclerose, possibilitando a sua utilização como estratégias terapêuticas na intervenção precoce para prevenir o desenvolvimento e a progressão da doença. / Atherosclerosis is a chronic inflammatory multifactorial disease related to the immune system and being the result of interaction of different cellular elements. The electronegative LDL, since the changes undergone by this particle are able to induce the accumulation of cholesterol esters in macrophages and the subsequent formation of foam cells, plays a key role in atherosclerosis. Recombinant antibodies have been generated in recent decades, such as scFv, (single chain fragment variable), and they may be used as a new alternative treatment for atherosclerosis treatment or prevention. Considering the role of LDL(-) in atherosclerosis, this project evaluated the effects of the treatment with anti-LDL(-) scFv 2C7 solution and anti-LDL(-) scFv conjugated to nanocapsules as a passive immunization strategy on atherosclerosis induced in LDL receptor knockout mice. After obtaining the anti-LDL(-) scFv 2C7 solution and its conjugation to nanocapsules (NC-scFv), in vitro tests led to the decrease in LDL(-) uptake in macrophages treated with anti-LDL(-) scFv 2C7. However, the treatment of macrophages with NC-scFv promoted increased internalization of LDL(-) as compared to control, possibly due to a mechanism of specific receptor-mediated endocytosis. In vivo studies have determined that LDLR-/- mice aged 2 and 3 months treated with anti-LDL(-) scFv 2C7 solution showed less atherosclerotic lesion area (p <0.05) compared to control and animals aged 3 to 4 months treated with NC-scFv showed a decreasing tendency of the same parameter. In the analysis of protein expression by immunohistochemistry, both groups treated with anti-LDL(-) scFv 2C7 solution and NC-scFv showed significant reduction of CD14 receptor expression and TLR-4 at the lesion site. This finding is of great importance, since the literature has both receptors as candidates for recognition of the LDL(-). From the data obtained, the study demonstrated the efficacy of treatments anti-LDL(-) scFv 2C7 in solution and NC-scFv in the context of atherosclerosis, enabling their use as therapeutic strategies in the early intervention to prevent the development and progression of the disease.
56

Structural stability and fusion of human low-density lipoproteins

Lu, Mengxiao 22 January 2016 (has links)
Low-density lipoproteins (LDL) are heterogeneous nanoparticles containing one copy of apolipoprotein B (~550 kDa) and thousands of lipids. LDL are the main plasma carriers of cholesterol and the major risk factor for atherosclerosis, the number one cause of death in the developed world. In atherosclerosis, LDL lipids are deposited in the arterial intima. Fusion of modified LDL in the arterial wall is an important underexplored triggering event in early atherosclerosis. Previous studies from our laboratory showed that thermal denaturation mimics LDL remodeling and fusion, and revealed the kinetic origin of LDL stability. Here, we report the first quantitative kinetic analysis of LDL stability. We show that LDL denaturation monitored by turbidity follows a sigmoidal time course that is unique among lipoproteins, suggesting that slow conformational changes in apoB precede lipoprotein fusion. High activation energy of LDL denaturation, Ea~100 kcal/mol, indicates disruption of extensive protein-protein and protein-lipid interactions involving large apoB domains. Next, we combined size-exclusion chromatography, gel electrophoresis and electron microscopy to show that dimerization is a common early step preceding LDL fusion. Monoclonal antibody binding studies indicated that α-helices in the N-terminal βα1 domain of apoB undergo conformational changes at early stages of LDL aggregation and fusion. Better understanding of these structural changes that prime LDL for fusion is important, as it may help control this pathogenic process before it occurs. We applied the kinetic approach to test how selected factors that are expected to contribute to LDL fusion in vivo affect the rate of LDL fusion and rupture in vitro. The results show that LDL fusion accelerates at pH<7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Further, we showed that thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.
57

Plasma Factors That Determine Endothelial Cell Lipid Toxicity in Vitro Correctly Identify Women With Preeclampsia in Early and Late Pregnancy

Arbogast, Bradley W., Leeper, Stephanie C., Merrick, R. Daniel, Olive, Kenneth E., Taylor, Robert N. 01 January 1996 (has links)
Objective: We proposed that women who develop preeclampsia have a low ratio of 'protective' toxicity preventing activity (TxPA) to 'toxic' very low density lipoproteins (VLDL) late in pregnancy. Having confirmed this hypothesis, we then tested whether this low ratio would manifest itself early in the pregnancy of women who develop preeclampsia. Methods: Serially collected plasma from women who developed preeclampsia and from matched controls was assayed blind for TxPA, triglycerides, cholesterol, high-density lipoproteins, albumin, and nonesterified fatty acids (NEFA). Main Outcome Measures: Plasma concentrations of lipids, NEFA, and proteins which bind NEFA (TxPA and albumin) were measured in normal and preeclamptic women. These parameters were formulated prior to data collection because of the low albumin/triglyceride' ratios and the elevated NEFA levels reported to occur in preeclampsia. Results: In late pregnancy, TxPA was lower (1.82 ± 0.63 vs. 2.30 ± 0.40 g/dL, P = 0.008) and VLDL higher (292 ± 130 vs. 206 ± 60 mg/dL, P = 0.013) in preeclamptics than in controls. Discrimination analysis (TxPA and triglyceride), correctly classified 95% of the preeclamptics and 79% of the controls in late pregnancy. The ratio of TxPA to non-TxPA and triglyceride correctly classified 92% of the preeclamptics and 85% of the controls in early pregnancy. Conclusions: The ratio of TxPA to VLDL accurately distinguishes preeclamptic from normal pregnant women, suggesting that both these factors are involved in the development of preeclampsia.
58

Acyl-coenzyme a:Cholesterol Acyltransferase Promotes Oxidized LDL/Oxysterol-Induced Apoptosis in Macrophages

Freeman, Natalie E., Rusinol, Antonio E., Linton, MacRae, Hachey, David L., Fazio, Sergio, Sinensky, Michael S., Thewke, Douglas 01 September 2005 (has links)
7-Ketocholesterol (7KC) is a cytotoxic component of oxidized low density lipoproteins (OxLDLs) and induces apoptosis in macrophages by a mechanism involving the activation of cytosolic phospholipase A2 (cPLA 2). In the current study, we examined the role of ACAT in 7KC-induced and OxLDL-induced apoptosis in murine macrophages. An ACAT inhibitor, Sandoz 58-035, suppressed 7KC-induced apoptosis in P388D1 cells and both 7KC-induced and OxLDL-induced apoptosis in mouse peritoneal macrophages (MPMs). Furthermore, compared with wild-type MPMs, ACAT-1-deficient MPMs demonstrated significant resistance to both 7KC-induced and OxLDL-induced apoptosis. Macrophages treated with 7KC accumulated ACAT-derived [14C]cholesteryl and [ 3H]7-ketocholesteryl esters. Tandem LC-MS revealed that the 7KC esters contained primarily saturated and monounsaturated fatty acids. An inhibitor of CPLA2, arachidonyl trifluoromethyl ketone, prevented the accumulation of 7KC esters and inhibited 7KC-induced apoptosis in P388B1 cells. The decrease in 7KC ester accumulation produced by the inhibition of cPLA 2 was reversed by supplementing with either oleic or arachidonic acid (AA); however, only AA supplementation restored the induction of apoptosis by 7KC. These results suggest that 7KC not only initiates the apoptosis pathway by activating cPLA2, as we have reported previously, but also participates in the downstream signaling pathway when esterified by ACAT to form 7KC-arachidonate.
59

Hopping Conductivity and Charge Transport in Low Density Polyethylene

Brunson, Jerilyn 01 May 2010 (has links)
The properties and behaviors of charge transport mechanisms in highly insulating polymers are investigated by measuring conduction currents through thin film samples of low density polyethylene (LDPE). Measurements were obtained using a constant voltage method with copper electrodes inside a chamber adapted for measurements under vacuum and over a wide range of temperatures and applied fields. Field-dependent behaviors, including Poole-Frenkel conduction, space charge limited current (SCLC), and Schottky charge injection, were investigated at constant temperature. These field-dependent mechanisms were found to predict incorrect values of the dielectric constant and the field dependence of conductivity in LDPE was not found to be in agreement with SCLC predicted behavior. A model of thermally assisted hopping was a good fit at low applied fields and produced activation energies within the accepted range for LDPE. Low applied field measurements over the range of 213 K to 338 K were used to investigate two prominent hopping conduction mechanisms: thermally assisted hopping and variable range hopping. The observed temperature dependence of LDPE was found to be consistent with both thermally assisted hopping and variable range hopping. Activation energies determined for the range of temperatures were consistent with values reported in the literature for LDPE under similar conditions. A third aspect of charge transport behavior is a bulk response with time dependence. Conductivity behavior is examined in relation to transient current behavior, long time decay currents, and electrostatic discharge. Comparing charging and discharging cycles allowed qualitative separation of polarization and multiple trapping behaviors.
60

Disruption of LDL receptor-like gene function in Caenorhabditis elegans

Oviedo Landaverde, Irene January 2004 (has links)
No description available.

Page generated in 0.0742 seconds