Spelling suggestions: "subject:"cow speed"" "subject:"bow speed""
11 |
The Development of a Research Technique for Low Speed AeroacousticsMcPhee, Adam D. January 2008 (has links)
The aerodynamic sound generated by wind turbines was identified as a growing concern within the industry. Prior to performing wind turbine aeroacoustic research, however, a technique suitable for studying low speed airfoils needed to be designed, serving as the primary research objective. A review of aeroacoustic theory and literature indicated that low speed flows are best studied using experimental methods, leading to the design of a near field pressure measurement technique. To facilitate the near field pressure measurements, a custom piezoelectric sensor was developed, exhibiting a pressure and frequency range of approximately 67 to 140[dB], and 100 to 10000[Hz], respectively. As a secondary research objective, a series of experiments were performed to validate the designed technique. The experiments were performed in a non-anechoic wind tunnel using a cylindrical test specimen. Using the near field pressure measurements, as well as a simple far field measurement, the sources of aerodynamic sound were effectively resolved. The Strouhal numbers corresponding to the contributing flow structures were generally within 1.5[%] of correlation based predictions. The near field pressures were consistently 10 to 15[dB] higher than the far field, quantifying the benefit of the near field technique. The method was also effective in detecting the decreasing coherence of the aeroacoustic sources with increasing Reynolds number. A minor deficiency was observed in which the ability to localize aeroacoustic sources was impeded, however, the cylinder experiments were particularly vulnerable to such a deficiency. Although the near field pressure measurements were shown to be effective in characterizing the aeroacoustic sources, a number of recommendations are presented to further improve the flexibility and measurement uncertainty of the experimental technique.
|
12 |
The Development of a Research Technique for Low Speed AeroacousticsMcPhee, Adam D. January 2008 (has links)
The aerodynamic sound generated by wind turbines was identified as a growing concern within the industry. Prior to performing wind turbine aeroacoustic research, however, a technique suitable for studying low speed airfoils needed to be designed, serving as the primary research objective. A review of aeroacoustic theory and literature indicated that low speed flows are best studied using experimental methods, leading to the design of a near field pressure measurement technique. To facilitate the near field pressure measurements, a custom piezoelectric sensor was developed, exhibiting a pressure and frequency range of approximately 67 to 140[dB], and 100 to 10000[Hz], respectively. As a secondary research objective, a series of experiments were performed to validate the designed technique. The experiments were performed in a non-anechoic wind tunnel using a cylindrical test specimen. Using the near field pressure measurements, as well as a simple far field measurement, the sources of aerodynamic sound were effectively resolved. The Strouhal numbers corresponding to the contributing flow structures were generally within 1.5[%] of correlation based predictions. The near field pressures were consistently 10 to 15[dB] higher than the far field, quantifying the benefit of the near field technique. The method was also effective in detecting the decreasing coherence of the aeroacoustic sources with increasing Reynolds number. A minor deficiency was observed in which the ability to localize aeroacoustic sources was impeded, however, the cylinder experiments were particularly vulnerable to such a deficiency. Although the near field pressure measurements were shown to be effective in characterizing the aeroacoustic sources, a number of recommendations are presented to further improve the flexibility and measurement uncertainty of the experimental technique.
|
13 |
Operating Speed Models for Low Speed Urban Enviroments based on In-Vehcile GPSWang, Jun 07 April 2006 (has links)
Low speed urban streets are designed to provide both access and mobility, and accommodate multiple road users, such as bicyclists and pedestrians. However, speeds on these facilities often exceed the intended operating speeds as well as their design speeds. Several studies have indicated that the design speed concept, as implemented in the roadway design process in the United States, does not guarantee a consistent alignment that promotes uniform operating speeds less than design speeds. To overcome these apparent shortfalls of the design speed approach, a promising design approach is a performance-based design procedure with the incorporation of operating speeds. Under this procedure, the geometric parameters of the roadways are selected based on their influences on the desired operating speeds. However, this approach requires a clear understanding of the relationships between operating speeds and various road environments. Although numerous studies have developed operating speed models, most of these previous studies have concentrated on high speed rural two-lane highways. In contrast, highway designers and planners have very little information regarding the influence of low speed urban street environments on drivers' speeds.
This dissertation investigated the relationship between drivers' speed choices and their associated low speed urban roadway environments by analyzing second-by-second in-vehicle GPS data from over 200 randomly selected vehicles in the Atlanta, Georgia area. The author developed operating speed models for low speed urban street segments based on roadway alignment, cross-section characteristics, roadside features, and adjacent land uses. The author found the number of lanes per direction of travel had the most significant influence on drivers' speeds on urban streets. Other significant variables include on-street parking, sidewalk presence, roadside object density and offset, T-intersection and driveway density, raised curb, and adjacent land use. The results of this research effort can help highway designers and planners better understand expected operating speeds when they design and evaluate low speed urban roadways.
|
14 |
Prediction of free and scattered acoustic fields of low-speed fansKücükcoskun, Korcan 22 March 2012 (has links) (PDF)
This thesis proposes to predict the sound emitted from low-speed fans and its scattered-field by installation effects related to industrial applications. Both tonal and broadband components of fan noise are investigated. Methods existing in the literature contain assumptions and simplifications in order to deal with fan noise problems in analytical manner, such as consideration of an observer located in the far-field of the source. Firstly, the effect of far-field assumption in the tonal fan noise formulation is addressed. Using artificial blade sources, a comparison between two closed-form analytical solutions and a numerical technique is performed for validation in free-field. Secondly, the scattered field of the tonal fan noise is investigated using numerical and analytical techniques. The acoustic field of a rotor operating in a finite duct is first investigated combining the closed-form analytical formulations with the Boundary Element Method (BEM). Since BEM would be computationally demanding for high frequency applications, analytical scattering techniques are also introduced. Reflection and scattering of sound waves by a large plane are first addressed replacing the plane with an image source. Secondly, an exact analytical solution considering scattering of the tonal fan noise by a rigid corner is derived. Another point addressed in this thesis is the prediction of the broadband noise generated by a low-speed axial fan operating in turbulent stream. Amiet's theory of turbulence-interaction noise for a stationary air foil is considered. One of the key points proposed in this thesis is an extension of Amiet's method, allowing prediction of the acoustic field of the airfoil in its geometrical near-field in a semi-analytical perspective. The extended formulation is compared with Amiet's classical solution and a reference solution obtained with numerical integration involving no geometrical far-field assumption. Experiments are also performed in anechoic chamber using an isolated airfoil located in grid generated turbulence. Another assumption made in Amiet's theory is the consideration of uniform flow impinging onto the airfoil. However this assumption is not valid for most industrial applications. Different methods exist in literature to deal with this problem. A new approach is proposed in order to take the span wise varying flow conditions into account. Including all the improvements, the broadband acoustic responses of a stationary airfoil located in the developing region of a jet and of a low-speed axial fan operating in a turbulent stream are investigated and validated against measurements. Finally, scattering of the sound generated by the considered airfoil and fan by benchmark obstacles is addressed numerically and analytically. Since BEM is not capable to handle statistical source fields directly, an innovative approach obtained by re-formulating the deterministic BEM method is employed. The final model is compared to the numerical, analytical and experimental solutions for validation purposes.
|
15 |
Diagnosis of low-speed bearing degradation using acoustic emission techniquesAlshimmeri, Fiasael 01 1900 (has links)
It is widely acknowledged that bearing failures are the primary reason for
breakdowns in rotating machinery. These failures are extremely costly,
particularly in terms of lost production. Roller bearings are widely used in
industrial machinery and need to be maintained in good condition to ensure the
continuing efficiency, effectiveness, and profitability of the production process.
The research presented here is an investigation of the use of acoustic emission
(AE) to monitor bearing conditions at low speeds.
Many machines, particularly large, expensive machines operate at speeds below
100 rpm, and such machines are important to the industry. However, the
overwhelming proportion of studies have investigated the use of AE techniques
for condition monitoring of higher-speed machines (typically several hundred
rpm, or even higher). Few researchers have investigated the application of these
techniques to low-speed machines (<100 rpm), This PhD addressed this
omission and has established which, of the available, AE techniques are suitable
for the detection of incipient faults and measurement of fault growth in low-speed
bearings.
The first objective of this research program was to assess the applicability of AE
techniques to monitor low-speed bearings. It was found that the measured
statistical parameters successfully monitored bearing conditions at low speeds
(10-100 rpm).
The second objective was to identify which commonly used statistical parameters
derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify
the onset of a fault in either race. It was found that the change in AE amplitude
and AE RMS could identify the presence of a small fault seeded into either the
inner or the outer races. However, the severe attenuation of the signal from the
inner race meant that, while AE amplitude and RMS could readily identify the
incipient fault, kurtosis and the AE counts could not. Thus, more attention needs
to be given to analysing the signal from the inner race. The third objective was to identify a measure that would assess the degree of
severity of the fault. However, once the defect was established, it was found that
of the parameters used only AE RMS was sensitive to defect size.
The fourth objective was to assess whether the AE signal is able to detect defects
located at either the centre or edge of the outer race of a bearing rotating at low
speeds. It is found that all the measured AE parameters had higher values when
the defect was seeded in the middle of the outer race, possibly due to the shorter
path traversed by the signal between source and sensor which gave a lower
attenuation than when the defect was on the edge of the outer race. Moreover,
AE can detect the defect at both locations, which confirmed the applicability of
the AE to monitor the defects at any location on the outer race.
|
16 |
NUMERICAL NEAR-STALL PERFORMANCE PREDICTION FOR A LOW SPEED SINGLE STAGE COMPRESSORSHUEY, MICHAEL G.E. January 2005 (has links)
No description available.
|
17 |
Ocean Current Energy Harvesting System for Arctic MonitoringZhang, Jiajun 02 January 2024 (has links)
Arctic Ocean monitoring with near-real-time data transfer is urgently needed. The harsh and remote conditions constraining year-round observation sites present significant logistical challenges and energy needs for sustained Arctic observations. The Arctic project group is attempting to design a mechanical structure to harvest energy from low-speed current in the Arctic Ocean. An Arctic energy harvesting system that consists of a transverse flux generator, boosted by a nozzle-diffuser-duct, and an American multiblade turbine that drives the generator, are designed in this study. The transverse flux generator is then optimized based on its design parameters and the optimization successfully improves the torque performance of the generator while maintaining the largest power output. The American turbine fits the extreme low-speed current condition (<0.2m/s) well and could support the rotation of the generator. Finally, the article compares the energy harvesting system is compared with the existing ones in the market and demonstrates its superior performance. / Master of Science / Arctic area has great potential and it is beneficial to monitor and do research in the Arctic area. The continuous energy could be a problem. The challenging and isolated conditions that limit the establishment of year-round observation stations pose significant logistical hurdles and energy requirements for continuous Arctic data collection. To address this, the Arctic project team is endeavoring to create a mechanical structure capable of harnessing energy from low-speed currents in the Arctic Ocean.
|
18 |
Modelos de falha em análise numérica de estrutura veicular submetida a impacto de baixa velocidade. / Numerical simulations and experiments of vehicle structures under low speed crash loadings to evaluate fracture models.Bugelli, Eduardo Barjud 26 March 2010 (has links)
O presente trabalho visa o estudo e avaliação de diversos modelos de falha através de ensaios experimentais e análises numéricas. A caracterização do material foi feita por meio de ensaios de tração de espécimes com e sem entalhe e de cisalhamento, para prover dados em uma ampla faixa de triaxialidade. A calibração dos parâmetros necessários para cada modelo de falha ocorreu através da obtenção das componentes de tensões e de deformações na região de ruptura, obtidas por meio de análises numéricas destes ensaios. O critério da máxima deformação plástica equivalente, modelo de dano de Johnson-Cook e critério da máxima tensão cisalhante foram aplicados em um caso de impacto em pára-choque. Diversos ensaios de impacto foram realizados até a que se atingisse a ruptura satisfatória do componente. Os ensaios foram modelados em elementos finitos, através do programa comercial LS-Dyna®, sendo que os modelos de falha calibrados foram aplicados para o ensaio onde se ocorreu ruptura. Houve boa concordância entre os resultados obtidos numericamente e experimentalmente, respeitadas as observações realizadas acerca da especificidade deste caso de impacto em baixa velocidade. / The aim of the present work is an assessment of several fracture models through experiments and numerical simulations. Tensile tests with notched and unnotched specimens were carried out to provide the material characterization in a wide range of stress triaxiality. The calibration of the parameters required by the fracture models was enabled by the parallel numerical simulation of the tensile tests, providing information on the stress and strain components at the failure locus. The constant equivalent strain criterion, the Johnson-Cook failure model and the maximum shear stress failure criterion were applied in a bumper beam impact case study. Several low speed impact tests were carried out in order to result in the components rupture. Numerical simulation of the experiments was performed using commercial finite element code LS-Dyna®. Good correlation of experiments and numerical simulations was achieved when considering this particular low speed case study.
|
19 |
Establishing very low speed, disturbance-free flow for anemometry in turbulent boundary layersLanspeary, Peter V. January 1998 (has links)
This document addresses problems encountered when establishing the very low air-flow speeds required for experimental investigations of the mechanisms of low-Reynolds-number boundary-layer turbulence. Small-scale motions in the near-wall region are important features of turbulent boundary-layer dynamics, and, if these features are to be resolved by measurements in air with conventionally-sized hot-wire probes, a well-behaved canonical turbulent boundary layer must be developed at free stream flow speeds no higher than 4 m/s. However, at such low speeds, the turbulent boundary layers developed on the walls of a wind tunnel are very susceptible to perturbation by non-turbulent time-dependent flow structures which originate upstream from the test section in the laminar flow at the inlet and in the contraction. Four different non-turbulent flow structures have been identified. The first is a result of quasi-two-dimensional separation of the laminar boundary-layer from the surfaces of the wind-tunnel contraction. Potential flow simulations show that susceptibility to this form of separation is reduced by increasing the degree of axisymmetry in the cross-section geometry and by decreasing the streamwise curvature of the concave surfaces. The second source of time-dependence in the laminar boundary-layer flow is an array of weak streamwise vortices produced by Goertler instability. The Goertler vortices can be removed by boundary-layer suction at the contraction exit. The third form of flow perturbation, revealed by visualisation experiments with streamers, is a weak large-scale forced-vortex swirl produced by random spatial fluctuations of temperature at the wind-tunnel inlet. This can be prevented by thorough mixing of the inlet flow; for example, a centrifugal blower installed at the inlet reduces the amplitude of temperature nonuniformity by a factor of about forty and so prevents buoyancy-driven swirl. When subjected to weak pressure gradients near the start of a wind-tunnel contraction, Goertler vortices in laminar wall layers can develop into three-dimensional separations with strong counter-rotating trailing vortices. These trailing vortices are the fourth source of unsteady flow in the test-section. They can be suppressed by a series of appropriately located screens which remove the low-speed-streak precursors of the three-dimensional separations. Elimination of the above four contaminating secondary flows permits the development of a steady uniform downstream flow and well-behaved turbulent wall layers. Measurements of velocity in the turbulent boundary layer of the test-section have been obtained by hot-wire anemometry. When a hot-wire probe is located within the viscous sublayer, heat transfer from the hot-wire filament to the wall produces significant errors in the measurements of both the mean and the fluctuating velocity components. This error is known as wall-proximity effect and two successful methods are developed for removing it from the hot-wire signal. The first method is based on the observation that, if all experimental parameters except flow speed and distance from the wall are fixed, the velocity error may be expressed nondimensionally as a function of only one parameter, in the form DeltaU^+=f(y^+). The second method, which also accommodates the effect of changing the hot-wire overheat ratio, is based on a dimensional analyis of heat transfer to the wall. Velocity measurements in the turbulent boundary layer at the mid-plane of a nearly square test-section duct have established that, when the boundary-layer thickness is less than one quarter of the duct height, mean-velocity characteristics are indistinguishable from those of a two-dimensional flat-plate boundary layer. In thicker mid-plane boundary layers, the mean-velocity characteristics are affected by stress-induced secondary flow and by lateral constriction of the boundary-layer wake region. A significant difference between flat-plate and duct boundary layers is also observed in momentum-balance calculations. The momentum-integral equation for a duct requires definitions of momentumd and displacement thickness which are different from those given for flat-plate boundary layers. Momentum-thickness growth rates predicted by the momentum-integral equation for a duct agree closely with measurements of the newly defined duct momentum thickness. Such agreement cannot be obtained in terms of standard flat-plate momentum thickness. In duct boundary layers with Reynolds numbers Re_theta between 400 and 2600, similarity in the wake-region distributions of streamwise turbulence statistics has been obtained by normalising distance from the wall with the flat-plate momentum thickness, theta_2. This result indicates that, in contrast with the mean velocity characteristics, the structure of mid-plane turbulence does not depend on the proportion of duct cross-section occupied by boundary layers and is essentially the same as in a flat-plate boundary layer. For Reynolds numbers less than 400, both wall-region and wake-region similarity fail because near-wall turbulence events interact strongly with the free stream flow and because large scale turbulence motions are directly influenced by the wall. In these conditions, which exist in both duct and flat-plate turbulent boundary layers, there is no distinct near-wall or wake region, and the behaviour of turbulence throughout the boundary layer depends on both wall variables and on outer region variables simultaneously. / Thesis (Ph.D.)--School of Mechanical Engineering, 1998.
|
20 |
Establishing very low speed, disturbance-free flow for anemometry in turbulent boundary layersLanspeary, Peter V. January 1998 (has links)
This document addresses problems encountered when establishing the very low air-flow speeds required for experimental investigations of the mechanisms of low-Reynolds-number boundary-layer turbulence. Small-scale motions in the near-wall region are important features of turbulent boundary-layer dynamics, and, if these features are to be resolved by measurements in air with conventionally-sized hot-wire probes, a well-behaved canonical turbulent boundary layer must be developed at free stream flow speeds no higher than 4 m/s. However, at such low speeds, the turbulent boundary layers developed on the walls of a wind tunnel are very susceptible to perturbation by non-turbulent time-dependent flow structures which originate upstream from the test section in the laminar flow at the inlet and in the contraction. Four different non-turbulent flow structures have been identified. The first is a result of quasi-two-dimensional separation of the laminar boundary-layer from the surfaces of the wind-tunnel contraction. Potential flow simulations show that susceptibility to this form of separation is reduced by increasing the degree of axisymmetry in the cross-section geometry and by decreasing the streamwise curvature of the concave surfaces. The second source of time-dependence in the laminar boundary-layer flow is an array of weak streamwise vortices produced by Goertler instability. The Goertler vortices can be removed by boundary-layer suction at the contraction exit. The third form of flow perturbation, revealed by visualisation experiments with streamers, is a weak large-scale forced-vortex swirl produced by random spatial fluctuations of temperature at the wind-tunnel inlet. This can be prevented by thorough mixing of the inlet flow; for example, a centrifugal blower installed at the inlet reduces the amplitude of temperature nonuniformity by a factor of about forty and so prevents buoyancy-driven swirl. When subjected to weak pressure gradients near the start of a wind-tunnel contraction, Goertler vortices in laminar wall layers can develop into three-dimensional separations with strong counter-rotating trailing vortices. These trailing vortices are the fourth source of unsteady flow in the test-section. They can be suppressed by a series of appropriately located screens which remove the low-speed-streak precursors of the three-dimensional separations. Elimination of the above four contaminating secondary flows permits the development of a steady uniform downstream flow and well-behaved turbulent wall layers. Measurements of velocity in the turbulent boundary layer of the test-section have been obtained by hot-wire anemometry. When a hot-wire probe is located within the viscous sublayer, heat transfer from the hot-wire filament to the wall produces significant errors in the measurements of both the mean and the fluctuating velocity components. This error is known as wall-proximity effect and two successful methods are developed for removing it from the hot-wire signal. The first method is based on the observation that, if all experimental parameters except flow speed and distance from the wall are fixed, the velocity error may be expressed nondimensionally as a function of only one parameter, in the form DeltaU^+=f(y^+). The second method, which also accommodates the effect of changing the hot-wire overheat ratio, is based on a dimensional analyis of heat transfer to the wall. Velocity measurements in the turbulent boundary layer at the mid-plane of a nearly square test-section duct have established that, when the boundary-layer thickness is less than one quarter of the duct height, mean-velocity characteristics are indistinguishable from those of a two-dimensional flat-plate boundary layer. In thicker mid-plane boundary layers, the mean-velocity characteristics are affected by stress-induced secondary flow and by lateral constriction of the boundary-layer wake region. A significant difference between flat-plate and duct boundary layers is also observed in momentum-balance calculations. The momentum-integral equation for a duct requires definitions of momentumd and displacement thickness which are different from those given for flat-plate boundary layers. Momentum-thickness growth rates predicted by the momentum-integral equation for a duct agree closely with measurements of the newly defined duct momentum thickness. Such agreement cannot be obtained in terms of standard flat-plate momentum thickness. In duct boundary layers with Reynolds numbers Re_theta between 400 and 2600, similarity in the wake-region distributions of streamwise turbulence statistics has been obtained by normalising distance from the wall with the flat-plate momentum thickness, theta_2. This result indicates that, in contrast with the mean velocity characteristics, the structure of mid-plane turbulence does not depend on the proportion of duct cross-section occupied by boundary layers and is essentially the same as in a flat-plate boundary layer. For Reynolds numbers less than 400, both wall-region and wake-region similarity fail because near-wall turbulence events interact strongly with the free stream flow and because large scale turbulence motions are directly influenced by the wall. In these conditions, which exist in both duct and flat-plate turbulent boundary layers, there is no distinct near-wall or wake region, and the behaviour of turbulence throughout the boundary layer depends on both wall variables and on outer region variables simultaneously. / Thesis (Ph.D.)--School of Mechanical Engineering, 1998.
|
Page generated in 0.0415 seconds