• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 18
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 65
  • 65
  • 44
  • 22
  • 20
  • 19
  • 15
  • 15
  • 14
  • 14
  • 11
  • 11
  • 11
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analýza elektronických obvodů programem Mathcad / Analysis of the electronic circuits using Mathcad program

Šimůnek, Martin January 2010 (has links)
The main idea of this thesis is a propose by designing filters in Mathcad program. This paper deals with a basic principle in filters design and these principles are implemented into the Mathcad program. In the introductory part is described aproximation which was used in Mathcad script. In the other parts of this project is described program which was created on designed filters.
32

Výkonový zesilovač pro pásmo krátkých vln / HF band power amplifier

Korvas, Miroslav January 2011 (has links)
The theme of my diploma thesis is a realization of the high frequency amplifier with possibility to change its class between class A, B and C with output low pass and band pass filters. The output power is supposed to be at about 10 W in frequency range 3,5 MHz to 14 MHz. The thesis contains theory of amplifier respectively transceiver and filters. In next parts I will design, simulate, realize and measure created amplifier and filters.
33

Elektronicky řiditelné kmitočtové filtry s proudovými aktivními prvky / Electronically controllable frequency filters with current active elements

Suchánek, Tomáš January 2011 (has links)
The aim of the thesis is to study the possibilities of the electronic frequency ?lter com- posed of active elements operating in current mode. The main opportunities lie in the change control parameters, most are marginal or quality factor frequency. As the active elements are considered especially CC (Current Convejor), controllable current ampli?er DACA (Digitally Adjustable Current Ampli?er) or combination with the current tracker MO-CF (Multiple Output Current Follower). Another part will focus on the management of the above parameters using digital potentiometers and choosing the appropriate ?lter structure. The ?nal task was to digital control parameters using a PC and measuring its properties.
34

Conception de modulateurs Delta-Sigma passe-bas en technologie CMOS pour des applications à large bande passante et haute résolution / Design of wideband high-resolution low-pass continuous-time delta-sigma modulators in CMOS process

Fakhoury, Hussein 19 December 2014 (has links)
Le marché des convertisseurs analogique-numérique peut être segmenté en deux catégories de circuits. Nous distinguons d’une part, les blocs de propriété intellectuelle (IP) qui sont généralement optimisés pour une application spécifique. Et d’autre part, les circuits intégrés discrets qui sont conçus pour répondre aux besoins d’une plus large gamme d’applications. Ce travail de thèse concerne la deuxième catégorie de composants. Il s’inscrit dans le cadre d'un programme de recherche et développement initié en 2010 dans le projet européen FP7 SACRA et dont le but était d'étudier la faisabilité d'un convertisseur analogique-numérique Delta-Sigma (DS) qui pourrait rivaliser avec l'architecture pipeline pour des applications nécessitant une large bande passante (≥10MHz) et une haute résolution (>10-bit) comme l’imagerie médicale, les communications numériques sans fils ou câblées, la vidéo ou encore l’instrumentation. Ce manuscrit synthétise les travaux de conception, fabrication et mesure d’un modulateur DS Passe-bas à temps continu avec une bande passante de 40MHz, et visant une résolution effective de 12-bit tout en consommant moins de 100mW. / The market of A/D converters can be segmented in two categories. From one side we distinguish the Intellectual Property (IP) blocks that are generally optimized for a specific application. On the other side, the general-purpose discrete Integrated Circuits (ICs) that are designed such as they could be used in different applications. This thesis work deals with the second category. It is part of a research and development program initiated in 2010 in the European project FP7 SACRA, whose purpose was to study the feasibility of a delta-sigma (DS) analog-to-digital converter that could compete with the pipeline architecture for applications that require high bandwidth (≥10MHz) and high resolution (>10-bit) such as medical imaging, wireless and wireline communications, video or instrumentation. Currently, the pipeline is still largely predominant for such applications and the few commercial wideband solutions based on a DS architecture have a signal bandwidth limited to 10 MHz or 25 MHz while consuming respectively 100mW and 20mW for an ENOB around 12-bit. This manuscript summarizes the design, fabrication and measurement of a low-pass CT DS modulator with a signal bandwidth of 40MHz, while targeting an effective resolution of 12-bit and a power consumption of less than 100mW.
35

Numerická syntéza filtrujících antén / Numerical synthesis of filtering antennas

Kufa, Martin January 2015 (has links)
Dizertační práce je zaměřena na kompletní metodiku návrhu tří a čtyř prvkových flíčkových anténních řad, které neobsahují žádné filtrující části a přesto se chovají jako filtrující antény (filtény). Návrhová metodika kombinuje přístup pro návrh filtrů s přístupem pro anténní řady a zahrnuje tvarování frekvenčních odezev činitele odrazu a normovaného realizovaného zisku. Směr hlavního laloku přes pracovní pásmo je kontrolován také. S cílem kontrolovat tvary uvedených charakteristik, nové gi koeficienty jsou představeny pro návrh filtrujících anténních řad. Návrhová metodika byla ověřena na tří a čtyř prvkové filtrující anténní řadě přes frekvenční pásmo od 4,8 GHz do 6,8 GHz, pro šířku pásma celé struktury od 7 % do 14 % a pro požadovanou úroveň činitele odrazu od –10 dB do –20 dB. Celá metodika byla podpořena výrobou a měřením šesti testovacích vzorků filtrujících anténních řad s rozdílnými konfiguracemi. Ve všech případech se simulované a naměřené výsledky dobře shodují.
36

Autonomous Orbit Estimation For Near Earth Satellites Using Horizon Scanners

Nagarajan, N 07 1900 (has links)
Autonomous navigation is the determination of satellites position and velocity vectors onboard the satellite, using the measurements available onboard. The orbital information of a satellite needs to be obtained to support different house keeping operations such as routine tracking for health monitoring, payload data processing and annotation, orbit manoeuver planning, and prediction of intrusion in various sensors' field of view by celestial bodies like Sun, Moon etc. Determination of the satellites orbital parameters is done in a number of ways using a variety of measurements. These measurements may originate from ground based systems as range and range rate measurements, or from another satellite as in the case of GPS (Global Positioning System) and TDUSS (Tracking Data Relay Satellite Systems), or from the same satellite by using sensors like horizon sensor^ sun sensor, star tracker, landmark tracker etc. Depending upon the measurement errors, sampling rates, and adequacy of the estimation scheme, the navigation accuracy can be anywhere in the range of 10m - 10 kms in absolute location. A wide variety of tracking sensors have been proposed in the literature for autonomous navigation. They are broadly classified as (1) Satellite-satellite tracking, (2) Ground- satellite tracking, (3) fully autonomous tracking. Of the various navigation sensors, it may be cost effective to use existing onboard sensors which are well proven in space. Hence, in the current thesis, the Horizon scanner is employed as the primary navigation sensor-. It has been shown in the literature that by using horizon sensors and gyros, a high accuracy pointing of the order of .01 - .03 deg can be achieved in the case of low earth orbits. Motivated by such a fact, the current thesis deals with autonomous orbit determination using measurements from the horizon sensors with the assumption that the attitude is known to the above quoted accuracies. The horizon scanners are mounted on either side of the yaw axis in the pitch yaw plane at an angle of 70 deg with respect to the yaw axis. The Field Of View (FOV) moves about the scanner axis on a cone of 45 deg half cone angle. During each scan, the FOV generates two horizon points, one at the space-Earth entry and the other at the Earth-space exit. The horizon points, therefore, lie• on the edge of the Earth disc seen by the satellite. For a spherical earth, a minimum of three such horizon points are needed to estimate the angular radius and the center of the circular horizon disc. Since a total of four horizon points are available from a pair of scanners, they can be used to extract the satellite-earth distance and direction.These horizon points are corrupted by noise due to uncertainties in the Earth's radiation pattern, detector mechanism, the truncation and roundoff errors due to digitisation of the measurements. Owing to the finite spin rate of the scanning mechanism, the measurements are available at discrete time intervals. Thus a filtering algorithm with appropriate state dynamics becomes essential to handle the •noise in the measurements, to obtain the best estimate and to propagate the state between the measurements. The orbit of a low earth satellite can be represented by either a state vector (position and velocity vectors in inertial frame) or Keplerian elements. The choice depends upon the available processors, functions and the end use of the estimated orbit information. It is shown in the thesis that position and velocity vectors in inertial frame or the position vector in local reference frame, do result in a simplified, state representation. By using the f and g series method for inertial position and velocity, the state propagation is achieved in linear form. i.e. Xk+1 = AXK where X is the state (position, velocity) and A the state transition matrix derived from 'f' and 'g' series. The configuration of a 3 axis stabilised spacecraft with two horizon scanners is used to simulate the measurements. As a step towards establishing the feasibility of extracting the orbital parameters, the governing equations are formulated to compute the satellite-earth vector from the four horizon points generated by a pair of Horizon Scanners in the presence of measurement noise. Using these derived satellite-earth vectors as measurements, Kalman filter equations are developed, where both the state and measurements equations are linear. Based on simulations, it is shown that a position accuracy of about 2 kms can be achieved. Additionally, the effect of sudden disturbances like substantial slewing of the solar panels prior and after the payload operations are also analysed. It is shown that a relatively simple Low Pass Filter (LPF) in the measurements loop with a cut-off frequency of 10 Wo (Wo = orbital frequency) effectively suppresses the high frequency effects from sudden disturbances which otherwise camouflage the navigational information content of the signal. Then Kalman filter can continue to estimate the orbit with the same kind of accuracy as before without recourse to re-tuning of covariance matrices. Having established the feasibility of extracting the orbit information, the next step is to treat the measurements in its original form, namely, the non-linear form. The entry or exit timing pulses generated by the scanner when multiplied by the scan rate yield entry or exit azimuth angles in the scanner frame of reference, which in turn represents an effective measurement variable. These azimuth angles are obtained as inverse trigonometric functions of the satellite-earth vector. Thus the horizon scanner measurements are non-linear functions of the orbital state. The analytical equations for the horizon points as seen in the body frame are derived, first for a spherical earth case. To account for the oblate shape of the earth, a simple one step correction algorithm is developed to calculate the horizon points. The horizon points calculated from this simple algorithm matches well with the ones from accurate model within a bound of 5%. Since the horizon points (measurements) are non-linear functions of the state, an Extended Kalman Filter (EKF) is employed for state estimation. Through various simulation runs, it is observed that the along track state has got poor observability when the four horizon points are treated as measurements in their original form, as against the derived satellite-earth vector in the earlier strategy. This is also substantiated by means of condition number of the observability matrix. In order to examine this problem in detail, the observability of the three modes such as along-track, radial, and cross-track components (i.e. the local orbit frame of reference) are analysed. This difficulty in observability is obviated when an additional sensor is used in the roll-yaw plane. Subsequently the simulation studies are carried out with two scanners in pitch-yaw plane and one scanner in the roll-yaw plane (ie. a total of 6 horizon points at each time). Based on the simulations, it is shown that the achievable accuracy in absolute position is about 2 kms.- Since the scanner in the roll-yaw plane is susceptible to dazzling by Sun, the effect of data breaks due to sensor inhibition is also analysed. It is further established that such data breaks do not improve the accuracy of the estimates of the along-track component during the transient phase. However, filter does not diverge during this period. Following the analysis of the' filter performance, influence of Earth's oblateness on the measurement model studied. It is observed that the error in horizon points, due to spherical Earth approximation behave like a sinusoid of twice the orbital frequency alongwith a bias of about 0.21° in the case of a 900 kms sun synchronous orbit. The error in the 6 horizon points is shown to give rise to 6 sinusoids. Since the measurement model for a spherical earth is the simplest one, the feasibility of estimating these sinusoids along with the orbital state forms the next part of the thesis. Each sinusoid along with the bias is represented as a 3 state recursive equation in the following form where i refers to the ith sinusoid and T the sampling interval. The augmented or composite state variable X consists of bias, Sine and Cosine components of the sinusoids. The 6 sinusoids together with the three dimensional orbital position vector in local coordinate frame then lead to a 21 state augmented Kalman Filter. With the 21 state filter, observability problems are experienced. Hence the magnetic field strength, which is a function of radial distance as measured by an onboard magnetometer is proposed as additional measurement. Subsequently, on using 6 horizon point measurements and the radial distance measurements obtained from a magnetometer and taking advantage of relationships between sinusoids, it is shown that a ten state filter (ie. 3 local orbital states, one bias and 3 zero mean sinusoids) can effectively function as an onboard orbit filter. The filter performance is investigated for circular as well as low eccentricity orbits. The 10-state filter is shown to exhibit a lag while following the radial component in case of low eccentricity orbits. This deficiency is overcome by introducing two more states, namely the radial velocity and acceleration thus resulting in a 12-state filter. Simulation studies reveal that the 12-state filter performance is very good for low eccentricity orbits. The lag observed in 10-state filter is totally removed. Besides, the 12-state filter is able to follow the changes in orbit due to orbital manoeuvers which are part of orbit acquisition plans for any mission.
37

Design of Harmonic Filters for Renewable Energy Applications

Kumar, Bhunesh January 2011 (has links)
Harmonics are created by non-linear devices connected to the power system. Power system harmonics are multiples of the fundamental power system frequency and these harmonic frequencies can create distorted voltages and currents. Distortion of voltages and currents can affect the power system adversely causing power quality problems. Therefore, estimation of harmonics is of high importance for efficiency of the power system network. The problem of harmonic loss evaluation is of growing importance for renewable power system industry by impacting the operating costs and the useful life of the system components. Non-linear devices such as power electronics converters can inject harmonics alternating currents (AC) in the electrical power system. The number of sensitive loads that require ideal sinusoidal supply voltage for their proper operation has been increasing. To maintain the quality limits proposed by standards to protect the sensitive loads, it is necessary to include some form of filtering device to the power system. Harmonics also increases overall reactive power demanded by equivalent load. Filters have been devised to achieve an optimal control strategy for harmonic alleviation problems. To achieve an acceptable distortion, increase the power quality and to reduce the harmonics hence several three phase filter banks are used and connected in parallel. In this thesis, high order harmonics cases have been suppressed by employing variants of Butterworth, Chebyshev and Cauer filters. MATLAB/SIMULINK wind farm model was used to generate and analyze the different harmonics magnitude and frequency. High voltage direct current (HVDC) lines for an electrical grid that is more than50km far away wind farm generation plant was investigated for harmonics. These HVDC lines are also used in offshore wind farm plant. Investigated three-phase harmonics filters are shunt elements that are used in power systems for decreasing voltage distortion and for correcting the power factor. Renewable energy sources are not the stable source of energy generation like wind, solar and tidal e.t.c. Though they are secondary sources of generation and hard to connect with electrical grid. In near future the technique is to use the wave digital filter (WDF) or circulator-tree wave digital filter (CTWDF) for the renewable energy application can be employed to mitigate the harmonics. These WDF and CTWDF can b eused in HVDC lines and smart grid applications. A preliminary analysis is conducted for such a study.
38

Υλοποίηση πειραματικής διάταξης υπολογισμού του καρδιακού ρυθμού χρησιμοποιώντας τεχνικές ψηφιακής επεξεργασίας εικόνας και βίντεο

Αλεξανδρή, Βασιλική 05 September 2011 (has links)
Η παρούσα διπλωματική εργασία, πραγματεύεται την εύρεση της κυματομορφής της μεταβολής της φωτεινότητας φωτονίων που διέρχονται από το χέρι ανθρώπου και δίνουν πληροφορία για την αρτηριακή πίεση και κατ’ επέκταση τον υπολογισμό του καρδιακού ρυθμού ενός ατόμου με τη χρήση τεχνικών επεξεργασίας εικόνας. Χρησιμοποιώντας μια σειρά από διόδους εκπομπής, στο ορατό και υπέρυθρο φάσμα, κατευθύνουμε το φως προς ένα δίκτυο ιστών όπου αυτό είναι λεπτό και το διαπερνά (δάκτυλο, λοβίο αυτιού κλπ). Στη συνέχεια, μέσω μιας βιντεοκάμερας παίρνουμε τα υπό εξέταση δεδομένα. Συγκρίνοντας την απορρόφηση του φωτός στις διαδοχικές εικόνες και ύστερα από κατάλληλη επεξεργασία των εικόνων με τη βοήθεια του Matlab οδηγούμαστε στην εύρεση του καρδιακού ρυθμού. / The present thesis deals with the determination of the waveform that depicts the fluctuation of the brightness of photons which pass through the hand of a person and provides information for the arterial pressure. Exploiting the results through digital image processing techniques, subject’s cardiac rhythm can be conclusively calculated. Using a series of diodes emitting in the visible spectrum along with a second series of diodes emitting in the infrared spectrum, we direct their light to a part of the human tissue which is thin (finger, earlobe etc) and can be easily penetrated. Afterwards via a CCD video camera we capture picture data of the light that is not absorbed. Cardiac rhythm can be calculated by comparing the absorption of light in successive pictures processed by digital imaging processing tools of Matlab.
39

Estudo comparativo de técnicas de estimativa do fluxo estatórico de MIT

Silveira, Augusto Wohlgemuth Fleury Veloso da 02 March 2007 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work shows and compares three different flux estimator algorithms developed for use in high-performance sensorless ac motor drives. The first algorithm uses a low pass filter with a very low cut off frequency to integrate the back electromotive force (emf). The second one uses a high pass filter to remove the offset present in the signal before it s integration. The third algorithm uses current and voltage model to estimate the flux of induction motor. These algorithms can be used to accurately measure the motor flux including magnitude and phase angle over a wide speed range. The performance of the algorithms is investigated, compared, and verified using simulation and experimental tests. / Este trabalho tem como objetivo apresentar uma comparação entre três algoritmos estimadores de fluxo estatórico diferentes. Estes algoritmos foram desenvolvidos para serem usados no projeto de acionamentos de alto desempenho, sem sensor de velocidade, para motores de indução. O primeiro algoritmo adotado utiliza um filtro passa baixa com uma freqüência de corte baixa para resolver a integração. O segundo algoritmo usa um filtro passa alta para retirar o offset do sinal de entrada do integrador puro. O terceiro algoritmo é um algoritmo híbrido que utiliza os modelos de tensão e corrente em paralelo para estimar o fluxo. Os algoritmos estimam fluxo estatórico em uma ampla faixa de freqüência de funcionamento do motor de indução e foram implementados na forma de simulação e experimentalmente para comparar o funcionamento dos mesmos em diferentes velocidades de operação do motor. / Mestre em Ciências
40

Análise de impactos de um sistema fotovoltaico conectado à rede em Mossoró/RN / Analysis of the Impacts of grid-connected photovoltaic system in Mossoró/RN

Balbino, Isaú Macêdo 29 August 2017 (has links)
Submitted by Lara Oliveira (lara@ufersa.edu.br) on 2018-01-17T21:17:50Z No. of bitstreams: 1 IsaúMB_DISSERT.pdf: 2720241 bytes, checksum: 6f834d2d4c55c17ad70d6fca472fbb7a (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2018-02-20T14:29:04Z (GMT) No. of bitstreams: 1 IsaúMB_DISSERT.pdf: 2720241 bytes, checksum: 6f834d2d4c55c17ad70d6fca472fbb7a (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2018-02-20T14:31:25Z (GMT) No. of bitstreams: 1 IsaúMB_DISSERT.pdf: 2720241 bytes, checksum: 6f834d2d4c55c17ad70d6fca472fbb7a (MD5) / Made available in DSpace on 2018-02-20T14:31:33Z (GMT). No. of bitstreams: 1 IsaúMB_DISSERT.pdf: 2720241 bytes, checksum: 6f834d2d4c55c17ad70d6fca472fbb7a (MD5) Previous issue date: 2017-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Environmental problems, like global warming and pollution, together with the rising fossil fuels prices in recent years have increased search for alternative energy sources, that are clean and sustainable at the same time. Among the main sources, it is possible to highlight the photovoltaic solar energy. For being a source of clean renewable energy with a low maintenance rate, photovoltaic solar energy has been gaining attention worldwide, and with this the Grid-Connected Photovoltaic System (GCPV) has grown in the last decades. Despite the benefits from the GCPV, for being a relatively new technology when compared with other energy sources, the same is not yet fully consolidated, and its installation requires care in regard to quality of electrical power. Problems such as production of harmonics, overvoltage and low power factor are common to these types of systems. Several researches are conducted every year and regulations are created, in order to reconcile the photovoltaic generation with the power distribution network. Therefore, the present work aims to identify, measure and analyze the behavior of GCPV of 3 kWp of UFERSA, in the city of Mossoró-RN, in order to verify the possible impacts to the quality of the electric energy associated with GCPV. In this research it was noticed that all the parameters are within the current standard regulations, however the high indexes of harmonic distortion rate made necessary the elaboration of a low-pass filter to attenuate the unwanted frequencies. With the simulation of the filter in Simulink, an attenuation of up to more than 60% was verified, thus improving the quality of the energy generated by the system / Os problemas ambientais, como o aquecimento global e a poluição, juntamente com o crescente preço dos combustíveis fósseis nos últimos anos, elevaram a procura por fontes alternativas de energia, que ao mesmo tempo fossem limpas e sustentáveis. Dentre as principais fontes, pode-se destacar a energia solar fotovoltaica. Por ser uma fonte de energia limpa, renovável e com baixo índice de manutenção, a energia solar fotovoltaica vem ganhando destaque no mundo inteiro, e com isso os Sistemas Fotovoltaicos Conectados à Rede (SFCR) cresceu nas últimas décadas. Apesar dos benefícios oriundos dos SFCR, por ser uma tecnologia relativamente nova quando comparada com outras fontes de energia, a mesma ainda não está totalmente consolidada, e sua instalação requer cuidados no que diz respeito à qualidade de energia elétrica. Problemas como produção de harmônicos, sobretensão e baixo fator de potência são comuns a estes tipos de sistemas. Várias pesquisas são realizadas todos os anos, e normas e regulamentos são criados, a fim de conciliar a geração fotovoltaica com a rede elétrica de distribuição. Portanto, o presente trabalho tem como objetivo identificar, medir e analisar o comportamento do SFCR de 3 kWp da UFERSA, na cidade de Mossoró-RN, a fim de se verificar os possíveis impactos à qualidade da energia elétrica associados aos SFCR’s. Nesta pesquisa percebeu-se que todos os parâmetros estão dentro das normas vigentes, porém os altos índices de taxa de distorção harmônica fizeram necessário a elaboração de um filtro passa-baixa para atenuar as frequências indesejadas. Com a simulação do filtro no Simulink, constatou-se uma atenuação de até mais de 60%, melhorando assim a qualidade da energia gerada pelo sistema / 2018-01-17

Page generated in 0.0224 seconds