• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

BALL SCREW LINEAR ACTUATOR CONTROL AND IMPLEMENTATION BY APPLYING LUGRE FRICTION MODEL

Jia, Mingpo January 2018 (has links)
The linear actuator is widely used in the industrial and aerospace arenas. The application of the linear actuator varies. The ball screw type linear actuator or ball screw system is one design. The ball screw is a mechanical system that converts rotation motion into a linear motion. The ball screw linear actuator, compared with other linear actuators, has better efficiency, higher speed, less noise, and higher load capacity. Ball screw linear actuators are used in a number of areas, such as coordinated measuring machines, 3D printers, and aerospace actuators. In this research, the industrial sponsor provided a ball screw linear actuator, and they required its accuracy to be improved. The linear actuator suffers from an accuracy problem due to various reasons. One of the major problems is nonlinear friction, which makes it difficult to estimate using the simple friction model. In this thesis, a LuGre friction model is introduced and applied to the ball screw system. The sponsor’s ball screw system includes the ball screw sliding table, AC servo drive, AC servo motor, and a linear encoder sensor. The hardware control system for the ball screw system needs to be built. Therefore, this thesis describes how a custom ball screw control system was built. The control hardware ball screw system includes a microcontroller and a custom-made digital-to-analog converter. The linear encoder position sensor’s reading methods were tested and implemented in the microcontroller. A custom digital-to-analog converter was made and tested. The control algorithms based on the LuGre friction compensator are discussed and were simulated in the Matlab Simulink environment. Then, the physical implementation of the control algorithms on ball screw system hardware were made. Finally, a new proposed control method based on the LuGre friction model performed best in terms of accuracy consistence and tracking compare to the other mentioned controllers. / Thesis / Master of Applied Science (MASc)
2

Modeling of Frictional Contact Conditions in Structures

Do, Nguyen Ba 19 May 2005 (has links)
This thesis explores two aspects of modeling the behavior of joint friction in structures. The first aspect deals with the accurate and efficient simulation of a simple system that incorporates the LuGre friction law. Energy transfer and dissipation in a structural joint model is the second topic of this thesis. It is hypothesized that friction could serve to pump energy from one frequency to higher frequencies where it might be dissipated more quickly. Motivation for this study stems from the need to have accurate models of high-precision space structures. Because friction at connecting joints plays a major role in the damping capacity of the structure, a good understanding of this mechanism is necessary to predict the vibratory response and enhance the energy dissipation of the structure. Simulation results of a dynamic system with LuGre friction show that the system is relatively well-conditioned when the slip velocity is small, and ill-conditioned for large slip velocities. Furthermore, the most efficient numerical method to simulate this system is determined to be an implicit integration scheme. To study the energy transfer and dissipation, two models of a jointed structure with friction are considered. Results from the steady-state forced responses of the two structural systems indicate that friction converted low frequency, single harmonic excitation to multi-harmonic response through internal resonances. However, differences in energy dissipation results between the models show that the response of a frictional system is highly sensitive to system parameters and friction laws. Conclusions and suggestions for future research are also discussed.
3

Online Identification of Friction Coefficients in an Industrial Robot

Längkvist, Martin January 2009 (has links)
<p>All mechanical systems with moving parts are affected by friction, including industrial robots. Being able to design an accurate friction model would further increase the performance of todays robots. Friction is a complex dynamic phenomena that is constantly changing depending on the state and environment of the robot. It is therefore beneficial to update the parameters of the friction model online. An estimate of the friction will be made using the feedback control signal with the help of a feedforward control scheme in a two axis simulation setup. The friction estimate is then used for an offline identification of three friction model parameters in a static Lugre friction model. Improvements on the identification will be done by introducing some shut-off rules that will improve the estimate. The normalized least mean square method (NLMS) will then be used to update the parameters online. A simulation of friction compensation with a fixed friction model, and with an adaptive friction model will be studied. The method will also be simulated using experimental data taken from a real industrial robot.</p>
4

Online Identification of Friction Coefficients in an Industrial Robot

Längkvist, Martin January 2009 (has links)
All mechanical systems with moving parts are affected by friction, including industrial robots. Being able to design an accurate friction model would further increase the performance of todays robots. Friction is a complex dynamic phenomena that is constantly changing depending on the state and environment of the robot. It is therefore beneficial to update the parameters of the friction model online. An estimate of the friction will be made using the feedback control signal with the help of a feedforward control scheme in a two axis simulation setup. The friction estimate is then used for an offline identification of three friction model parameters in a static Lugre friction model. Improvements on the identification will be done by introducing some shut-off rules that will improve the estimate. The normalized least mean square method (NLMS) will then be used to update the parameters online. A simulation of friction compensation with a fixed friction model, and with an adaptive friction model will be studied. The method will also be simulated using experimental data taken from a real industrial robot.
5

Transient vibrations from dry clutch operation in heavy-duty truck powertrains : Modelling, simulation and validation

Sjöstrand, Jakob January 2021 (has links)
For internal combustion engines used in heavy-duty vehicles, increased engine efficiency and consequently reduced CO2 emissions can be obtained if the engine speed can be kept within an optimal speed range. This requires swift and frequent gear shifts where the dry friction clutch is utilized. Enhanced dry clutch simulation models and a better understanding of the involved phenomena can assist the development towards swifter gear shifts and help reduce CO2 emissions. The work presented in this thesis focuses on the modelling of dry clutch systems for heavy-duty applications and their effect on the torsional response of the driveline during transient events such as clutch engagement and disengagement. During these events it is primarily the first vibration mode of the driveline that is active and consequently it is possible to greatly reduce theof degrees of freedom (DOFs) of the powertrain model and still capture the relevant dynamics of the powertrain. The reduced set of differential equationsdescribe the torsional motion of the powertrain and the equations of motion are solved numerically in the time-domain. From a mathematical point ofview, the equations of motion turn "stiff" when the clutch is locked. This issue is resolved by utilizing numerical solution techniques suitable for stiff differential equations. In the simulations it was observed that no engine torque fluctuations were transferred through the slipping clutch. Consequently the response of the driveline is purely modal during sliding. If the gradient of the coefficient of friction is negative the modal response is possibly unstable with exponentially growing vibration amplitudes as an effect. Moreover, the way in which the clamp load evolves during clutch engagement is found to severely effect the excitation of transient vibrations during clutch synchronization. It can be shown that reducing the gradient of the evolving clamp load at the onset of sliding will reduce the amplitude of the friction induced vibrations. Reducing the torsional vibration amplitudes will help avoid the jerky motion of the vehicle during launch and increase comfort for driver and passengers. / Reduced transmission vibrations - reduced energy consumption and environmental impacts together with an increased competitiveness. Swedish Energy Agency (project No. 42100-1)
6

Stability of controlled mechanical system with parametric uncertainties in a realistic friction model

Sun, Yun-Hsiang January 2015 (has links)
Friction compensation is challenging but imperative for control engineers. For high-performance engineering systems, a friction-model-based controller is typically required to accommodate the nonlinearities arisen from the friction model employed. It is well known that the parameters of the friction model used in the friction compensation are nearly impossible to be accurately identified. Therefore, the objective of this research is to study the effect of these parametric uncertainties on the stability of a set-point position control system. With the above goal in mind, a variety of aspects are investigated in this work. Firstly, several common friction features and friction models are surveyed to provide background knowledge which helps select the friction model with the highest accuracy for our study. Secondly, an experimental setup is proposed and fabricated to validate the levels of accuracy given by the candidate friction models. The comparisons between the numerical and experimental results confirm that the LuGre friction model is the best approximation of the observed friction behaviours among all models selected. Moreover, a series of profound discussions addressing the relation between the candidate models’ structures and their numerical friction feature predictions are provided and followed by a summary table that recapitulates the properties of the candidate friction models. Last but not least, the state space models of the proposed setup formulated by the improved version of the LuGre model and the two controllers of interest, namely input-output linearization controller and nominal characteristic trajectory following (NCTF) controller, are derived for the stability analysis under the parametric uncertainties. Two parameters in the friction model used, σ_0 and σ_1, are perturbed for the stability analysis in which the results applying the concept of Lyapunov exponents (LEs) clearly illustrate the significant effect of the varying σ_0 and σ_1 values on the system stability. The effect of parametric uncertainties can depend quite significantly on the incorporated controller, and the stability results obtained here are applicable to the design and analysis of other systems that are inherently similar to our setup. The stability analysis conducted is this work is recommended for other control systems to avoid unwanted qualitative behaviours under parametric perturbations. / October 2016
7

SIMULATED AND EXPERIMENTAL SLIDING MODE CONTROL OF A HYDRAULIC POSITIONING SYSTEM

Wondimu, Nahom Abebe 18 May 2006 (has links)
No description available.
8

Nonlinear Modeling and Control of Automobiles with Dynamic Wheel-Road Friction and Wheel Torque Inputs

Villella, Matthew G. 12 April 2004 (has links)
This thesis presents a new nonlinear automobile dynamical model and investigates the possibility of automobile dynamic control with wheel torque utilizing this model. The model has been developed from first principles by applying classical mechanics. Inputs to the model are the four independent wheel torques, while the steer angles at each wheel are specified as independent time-varying signals. In this way, consideration of a variety of steering system architectures, including rear-wheel steer, is possible, and steering introduces time-varying structure into the vehicle model. The frictional contact at the wheel-road interface is modeled by use of the LuGre dynamic friction model. Extensions to the existing two-dimensional LuGre friction model are derived and the steady-state of the friction model is compared to existing static friction models. Simulation results are presented to validate the model mathematics and to explore automobile behavior in a variety of scenarios. Vehicle control with wheel torque is explored using the theory of input-output linearization for multi-input multi-output systems. System relative degree is analyzed and use of steady-state LuGre friction in a control design model is shown to give rise to relative degree singularities when no wheel slip occurs. Dynamic LuGre friction does not cause such singularities, but instead has an ill-defined nature under the same no-slip condition. A method for treating this ill-defined condition is developed, leading to the potential for the system to have relative degree. Longitudinal velocity control and combined longitudinal and angular vehicle velocity control are demonstrated in simulation using input-output linearization, and are shown to produce improved vehicle response as compared to the open-loop behavior of the automobile. Robustness of the longitudinal velocity control to friction model parameter variation is explored and little impact to the controller's ability to track the desired trajectory is observed.

Page generated in 0.0965 seconds