• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Method for detection of sleepiness : - measurement of interaction between driver and vehicle

Lundin, Maria, Kanstrup, Lena January 2006 (has links)
<p>As more and more people conduct vigilance-based activities at times other than the traditional daytime work hours, the time utilization will continue to escalate in the next century and will further increase the risks of sleepiness-related accidents.</p><p>This project, which is commissioned by Scania CV AB, is to nvestigate the potential of a method for sleepiness detection belonging to esium AB. Our objective is to examine whether Scania CV AB should continue with the investigation of the patent method, and in that case, which patent parameters, that indicate sleepiness, should be more closely inquired. The purpose with the method of patent is to discover a sleepy driving behaviour. This method is based on the interaction that appears between the driver and the vehicle. The interaction consists of small spontaneous corrections with the steering wheel that in this report is called micro communication. How well the interaction is functioning can be measured in degree of interaction, which shows how well the driver and the truck interact with each other. The interaction between the driver and the vehicle is in this report looked upon as answers and questions with a certain reaction time, which appears with a certain answered question frequency. The differences in the signal’s amplitudes are measured in variation in amplitudes.</p><p>Experiments to collect relevant signals have to be conducted in order to investigate the potential with the method of the patent. It is eligible to collect data from a person falling asleep, which implies experiments conducted in a simulator. The experiments are executed in</p><p>a simulator, one test when they are alert and one when they are sleep deprived. Tests are also executed in a Scania truck. The purpose with these experiments is to collect data of the subject’s normal driving pattern in a truck and to investigate if it is possible to obtain</p><p>acceptable data in a truck.</p><p>The sleepiness experiments have indicated that the micro communication takes place in a frequency range of 0.25 to 6.0 Hz. The variables that have been found to detect sleepiness with high reliability are the reaction time and the degree of interaction presented in spectra.</p><p>The validation experiments have shown it is possible to collect exact and accurate data from the lateral acceleration and the steering wheel torque. But, there is more noise in the signals from truck then there is in the signals from the simulator.</p><p>This method for sleepiness detection has, according to the authors, a great potential. However, more experiments have to be conducted. The authors suggest further sleepiness experiments only conducted during night time. The subjects are sufficiently alert in the beginning of the test to receive data from normal driving behaviour. Physiological measurement could be interesting to have by the side of the subjective assessments as an additional base for comparison.</p>
2

Method for detection of sleepiness : measurement of interaction between driver and vehicle

Lundin, Maria, Kanstrup, Lena January 2006 (has links)
As more and more people conduct vigilance-based activities at times other than the traditional daytime work hours, the time utilization will continue to escalate in the next century and will further increase the risks of sleepiness-related accidents. This project, which is commissioned by Scania CV AB, is to nvestigate the potential of a method for sleepiness detection belonging to esium AB. Our objective is to examine whether Scania CV AB should continue with the investigation of the patent method, and in that case, which patent parameters, that indicate sleepiness, should be more closely inquired. The purpose with the method of patent is to discover a sleepy driving behaviour. This method is based on the interaction that appears between the driver and the vehicle. The interaction consists of small spontaneous corrections with the steering wheel that in this report is called micro communication. How well the interaction is functioning can be measured in degree of interaction, which shows how well the driver and the truck interact with each other. The interaction between the driver and the vehicle is in this report looked upon as answers and questions with a certain reaction time, which appears with a certain answered question frequency. The differences in the signal’s amplitudes are measured in variation in amplitudes. Experiments to collect relevant signals have to be conducted in order to investigate the potential with the method of the patent. It is eligible to collect data from a person falling asleep, which implies experiments conducted in a simulator. The experiments are executed in a simulator, one test when they are alert and one when they are sleep deprived. Tests are also executed in a Scania truck. The purpose with these experiments is to collect data of the subject’s normal driving pattern in a truck and to investigate if it is possible to obtain acceptable data in a truck. The sleepiness experiments have indicated that the micro communication takes place in a frequency range of 0.25 to 6.0 Hz. The variables that have been found to detect sleepiness with high reliability are the reaction time and the degree of interaction presented in spectra. The validation experiments have shown it is possible to collect exact and accurate data from the lateral acceleration and the steering wheel torque. But, there is more noise in the signals from truck then there is in the signals from the simulator. This method for sleepiness detection has, according to the authors, a great potential. However, more experiments have to be conducted. The authors suggest further sleepiness experiments only conducted during night time. The subjects are sufficiently alert in the beginning of the test to receive data from normal driving behaviour. Physiological measurement could be interesting to have by the side of the subjective assessments as an additional base for comparison.
3

Nonlinear Modeling and Control of Automobiles with Dynamic Wheel-Road Friction and Wheel Torque Inputs

Villella, Matthew G. 12 April 2004 (has links)
This thesis presents a new nonlinear automobile dynamical model and investigates the possibility of automobile dynamic control with wheel torque utilizing this model. The model has been developed from first principles by applying classical mechanics. Inputs to the model are the four independent wheel torques, while the steer angles at each wheel are specified as independent time-varying signals. In this way, consideration of a variety of steering system architectures, including rear-wheel steer, is possible, and steering introduces time-varying structure into the vehicle model. The frictional contact at the wheel-road interface is modeled by use of the LuGre dynamic friction model. Extensions to the existing two-dimensional LuGre friction model are derived and the steady-state of the friction model is compared to existing static friction models. Simulation results are presented to validate the model mathematics and to explore automobile behavior in a variety of scenarios. Vehicle control with wheel torque is explored using the theory of input-output linearization for multi-input multi-output systems. System relative degree is analyzed and use of steady-state LuGre friction in a control design model is shown to give rise to relative degree singularities when no wheel slip occurs. Dynamic LuGre friction does not cause such singularities, but instead has an ill-defined nature under the same no-slip condition. A method for treating this ill-defined condition is developed, leading to the potential for the system to have relative degree. Longitudinal velocity control and combined longitudinal and angular vehicle velocity control are demonstrated in simulation using input-output linearization, and are shown to produce improved vehicle response as compared to the open-loop behavior of the automobile. Robustness of the longitudinal velocity control to friction model parameter variation is explored and little impact to the controller's ability to track the desired trajectory is observed.
4

Experimentální metodologie měřicího řetězce / Experimental methodology of measuring

Lojková, Lea January 2011 (has links)
This work is focused on the development of a thorough study about ISO standards focused on the vehicle dynamics, standardized tests of vehicle dynamics and measured variables that allow us to describe and model the behaviour of riding vehicles properly. In the Appendix A of the thesis, there is a list of all known ISO standards dealing with given topic. The standard ISO 15037-1 Road vehicles – Vehicle dynamics test methods, Part 1: General conditions for passenger cars is described in detail, including the forms for test reports and the Appendix C and D. In the thesis, there is also described a model of minimal needed measuring system that is still in good accordance with the standard ISO 15037-1 and fulfills all its requirements. Detailed description of all used sensors that are used to measure required variables is given, as well as a short description of all sensors that are used for measurement of other variables. After that, measurement abilities of the instrumentation of measuring system RIO used in ÚADI FSI Brno is compared and confronted with requirements given by the standard, to see, if all given criteria are properly fulfilled. Because of the fact that standard-given criteria are quite mild, while the equipment of the faculty is high-level technology, mostly made directly for measuring of dynamic parameters of the vehicles, including racing vehicles, the system is in full accordance with the standard ISO 15037-1.

Page generated in 0.0683 seconds