• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling, simulation and control of a hydraulic crane

Heinze, Alexander January 2008 (has links)
The objective of this thesis is to develop a model that represents the dynamics of a hydraulically operated forestry crane. The model was derived with the traditional Euler-Lagrange formalism and considers the crane mechanics, three double-acting hydraulic cylinders and the valve control unit. On the basis of the derived model we reproduced the entire crane model in MATLAB in order to run simulations herewith. This gave us the possibility to do parameter changes for further studies of the crane in motion. Another major goal within the thesis work was to estimate cylinder friction of the hydraulic actuators. We built up a test rig and used double-acting cylinders for determing their frictional behaviour. For this, we ran open-loop experiments in order to create velocity-friction maps that represented the static friction force of the cylinders. In this concern, we varied system pressure and cylinder load to study their influence on the friction force. By means of the derived static friction maps we approached the cylinder’s dynamic friction behaviour and applied both step and ramp control inputs to examine the spring-damping characteristics of the microspoic bristles in the contacting area. The dynamic friction experiments have been exerted in the fashion of the LuGre model. As a result we acquired different nominal friction parameters that we necessarily used to develope adequate friction models. A third objective of this thesis was to establish a crane-tip control. Instead of a traditional control, providing a direct relationship between joystick input and cylinder extension, the focus was to build up a control for the end-effector’s trajectory in a two-dimensional frame. This could be achieved by using inverse kinematics in order to determine the required joint angles that corresponded to the desired position of the crane-tip. The work also contains a CD including all developed MATLAB models that have been written within this project.
2

Modelling, simulation and control of a hydraulic crane

Heinze, Alexander January 2008 (has links)
<p>The objective of this thesis is to develop a model that represents the dynamics of a hydraulically operated forestry crane. The model was derived with the traditional Euler-Lagrange formalism and considers the crane mechanics, three double-acting hydraulic cylinders and the valve control unit. On the basis of the derived model we reproduced the entire crane model in MATLAB in order to run simulations herewith. This gave us the possibility to do parameter changes for further studies of the crane in motion.</p><p>Another major goal within the thesis work was to estimate cylinder friction of the hydraulic actuators. We built up a test rig and used double-acting cylinders for determing their frictional behaviour. For this, we ran open-loop experiments in order to create velocity-friction maps that represented the static friction force of the cylinders. In this concern, we varied system pressure and cylinder load to study their influence on the friction force. By means of the derived static friction maps we approached the cylinder’s dynamic friction behaviour and applied both step and ramp control inputs to examine the spring-damping characteristics of the microspoic bristles in the contacting area. The dynamic friction experiments have been exerted in the fashion of the LuGre model. As a result we acquired different nominal friction parameters that we necessarily used to develope adequate friction models.</p><p>A third objective of this thesis was to establish a crane-tip control. Instead of a traditional control, providing a direct relationship between joystick input and cylinder extension, the focus was to build up a control for the end-effector’s trajectory in a two-dimensional frame. This could be achieved by using inverse kinematics in order to determine the required joint angles that corresponded to the desired position of the crane-tip.</p><p>The work also contains a CD including all developed MATLAB models that have been written within this project.</p>
3

Controle em cascata e a estrutura variável com adaptação de parâmetros e compensação de atrito de um servoposicionador pneumático / Variable structure cascade control with parameter adaption and friction compensation applied to a pneumatic positioning system

Sobczyk Sobrinho, Mario Roland January 2009 (has links)
Este trabalho discute o problema do controle preciso do seguimento de trajetórias de um servoposicionador pneumático. Um modelo matemático para o servoposicionador pneumático é apresentado, com atenção especial sendo dada à modelagem dos efeitos do atrito. Para a representação desses efeitos, é proposta uma modificação da estrutura matemática de um modelo de atrito amplamente utilizado no contexto dos algoritmos de controle em tempo real de servomecanismos (o modelo LuGre). A validade da aproximação proposta é justificada por meio de argumentos tanto analíticos como baseados em simulações. Com base no modelo para o atrito resultante da modificação proposta, apresenta-se um novo algoritmo de controle para o servoposicionador pneumático. Esse algoritmo é desenvolvido de acordo com a metodologia do controle em cascata, associada à técnica do controle a estrutura variável, sendo dotado de um esquema de compensação adaptativa dos efeitos do atrito e das forças externas aplicadas ao sistema. Uma análise de estabilidade completa é realizada para o sistema em malha fechada, onde são estabelecidas condições suficientes para que seja assegurada a convergência assintótica dos erros de seguimento para zero e dos parâmetros estimados a valores limitados. Também é apresentada uma análise de robustez do sistema controlado frente a incertezas nos parâmetros do modelo matemático do mesmo. O controlador proposto é avaliado por meio de testes por simulação e por aplicação a uma bancada experimental. / This work discusses the problem of the precise control of the trajectory tracking executed by a pneumatic positioning system. A mathematical model of the pneumatic positioning system is presented, with special emphasis given to the modeling of friction effects. For representing such effects, it is proposed a modification in the mathematical structure of a friction model that is widely employed in the context of the real-time control of servomechanisms (the LuGre model). The validity of the proposed approximation is justified by means of analytical arguments as well as simulation results. Based on the friction model that results from the proposed modification, a new control algorithm to be applied to the pneumatic positioning system is presented. Such algorithm is developed according to the cascade methodology, in association with the variable structure control technique and equipped with an adaptive compensation scheme of the effects of friction and external forces applied to the system. A complete stability analysis of the closed loop system is developed, and sufficient conditions are determined so that the asymptotic convergence of the tracking errors of the system to zero and of the estimated parameters to limited values is ensured. The robustness properties of the controlled system with respect to parametric uncertainties in its mathematical model are also analyzed. The performance of the controller is studied by means of simulation and experimental tests.
4

Controle em cascata e a estrutura variável com adaptação de parâmetros e compensação de atrito de um servoposicionador pneumático / Variable structure cascade control with parameter adaption and friction compensation applied to a pneumatic positioning system

Sobczyk Sobrinho, Mario Roland January 2009 (has links)
Este trabalho discute o problema do controle preciso do seguimento de trajetórias de um servoposicionador pneumático. Um modelo matemático para o servoposicionador pneumático é apresentado, com atenção especial sendo dada à modelagem dos efeitos do atrito. Para a representação desses efeitos, é proposta uma modificação da estrutura matemática de um modelo de atrito amplamente utilizado no contexto dos algoritmos de controle em tempo real de servomecanismos (o modelo LuGre). A validade da aproximação proposta é justificada por meio de argumentos tanto analíticos como baseados em simulações. Com base no modelo para o atrito resultante da modificação proposta, apresenta-se um novo algoritmo de controle para o servoposicionador pneumático. Esse algoritmo é desenvolvido de acordo com a metodologia do controle em cascata, associada à técnica do controle a estrutura variável, sendo dotado de um esquema de compensação adaptativa dos efeitos do atrito e das forças externas aplicadas ao sistema. Uma análise de estabilidade completa é realizada para o sistema em malha fechada, onde são estabelecidas condições suficientes para que seja assegurada a convergência assintótica dos erros de seguimento para zero e dos parâmetros estimados a valores limitados. Também é apresentada uma análise de robustez do sistema controlado frente a incertezas nos parâmetros do modelo matemático do mesmo. O controlador proposto é avaliado por meio de testes por simulação e por aplicação a uma bancada experimental. / This work discusses the problem of the precise control of the trajectory tracking executed by a pneumatic positioning system. A mathematical model of the pneumatic positioning system is presented, with special emphasis given to the modeling of friction effects. For representing such effects, it is proposed a modification in the mathematical structure of a friction model that is widely employed in the context of the real-time control of servomechanisms (the LuGre model). The validity of the proposed approximation is justified by means of analytical arguments as well as simulation results. Based on the friction model that results from the proposed modification, a new control algorithm to be applied to the pneumatic positioning system is presented. Such algorithm is developed according to the cascade methodology, in association with the variable structure control technique and equipped with an adaptive compensation scheme of the effects of friction and external forces applied to the system. A complete stability analysis of the closed loop system is developed, and sufficient conditions are determined so that the asymptotic convergence of the tracking errors of the system to zero and of the estimated parameters to limited values is ensured. The robustness properties of the controlled system with respect to parametric uncertainties in its mathematical model are also analyzed. The performance of the controller is studied by means of simulation and experimental tests.
5

Controle em cascata e a estrutura variável com adaptação de parâmetros e compensação de atrito de um servoposicionador pneumático / Variable structure cascade control with parameter adaption and friction compensation applied to a pneumatic positioning system

Sobczyk Sobrinho, Mario Roland January 2009 (has links)
Este trabalho discute o problema do controle preciso do seguimento de trajetórias de um servoposicionador pneumático. Um modelo matemático para o servoposicionador pneumático é apresentado, com atenção especial sendo dada à modelagem dos efeitos do atrito. Para a representação desses efeitos, é proposta uma modificação da estrutura matemática de um modelo de atrito amplamente utilizado no contexto dos algoritmos de controle em tempo real de servomecanismos (o modelo LuGre). A validade da aproximação proposta é justificada por meio de argumentos tanto analíticos como baseados em simulações. Com base no modelo para o atrito resultante da modificação proposta, apresenta-se um novo algoritmo de controle para o servoposicionador pneumático. Esse algoritmo é desenvolvido de acordo com a metodologia do controle em cascata, associada à técnica do controle a estrutura variável, sendo dotado de um esquema de compensação adaptativa dos efeitos do atrito e das forças externas aplicadas ao sistema. Uma análise de estabilidade completa é realizada para o sistema em malha fechada, onde são estabelecidas condições suficientes para que seja assegurada a convergência assintótica dos erros de seguimento para zero e dos parâmetros estimados a valores limitados. Também é apresentada uma análise de robustez do sistema controlado frente a incertezas nos parâmetros do modelo matemático do mesmo. O controlador proposto é avaliado por meio de testes por simulação e por aplicação a uma bancada experimental. / This work discusses the problem of the precise control of the trajectory tracking executed by a pneumatic positioning system. A mathematical model of the pneumatic positioning system is presented, with special emphasis given to the modeling of friction effects. For representing such effects, it is proposed a modification in the mathematical structure of a friction model that is widely employed in the context of the real-time control of servomechanisms (the LuGre model). The validity of the proposed approximation is justified by means of analytical arguments as well as simulation results. Based on the friction model that results from the proposed modification, a new control algorithm to be applied to the pneumatic positioning system is presented. Such algorithm is developed according to the cascade methodology, in association with the variable structure control technique and equipped with an adaptive compensation scheme of the effects of friction and external forces applied to the system. A complete stability analysis of the closed loop system is developed, and sufficient conditions are determined so that the asymptotic convergence of the tracking errors of the system to zero and of the estimated parameters to limited values is ensured. The robustness properties of the controlled system with respect to parametric uncertainties in its mathematical model are also analyzed. The performance of the controller is studied by means of simulation and experimental tests.
6

Physically Meaningful Harmonization of Tire/Pavement Friction Measurement Devices

Rajapakshe, Madhura Priyanga Nishshanke 01 January 2011 (has links)
Accurate characterization and evaluation of tire/pavement friction is critical in assuring runway and highway safety. Historically, Pavement Friction Measurement Devices (PFMDs) employing different measuring mechanisms have been used to evaluate tire/pavement friction. They yield significantly disparate friction coefficients under the same contact conditions. Currently, an empirically developed data harmonization method based on a reference device (Dynamic Friction Tester (DFT)) is used in an attempt to overcome the disparities between the measurements using various different PFMDs. However, this method, which has been standardized by the American Society for Testing and Materials (ASTM E1960), has been criticized for its inconsistency by researchers and runway/highway operations personnel. The objective of this dissertation research was to develop a systematic and physically intuitive harmonization method for PFMDs that will improve the comparability of their data. As a foundation for such a harmonization, the LuGre tire model that employs physically meaningful parameters to represent the main attributes of tire/pavement friction was evaluated and validated. Measurements of tire/pavement friction by three widely used PFMDs; Locked Wheel Skid Trailer (LWST), Runway Friction Tester (RFT) and DFT, were accurately predicted using nonlinear optimization of LuGre model parameters. The LuGre model was found to be superior compared to the model used in the current ASTM E1960 standardization procedure for predicting PFMD measurements. A sensitivity analysis was performed to identify the relative significance of the LuGre model parameters in characterizing tire/pavement friction, and to study the effects of variation of those parameters on predicted frictional behavior. A set of laboratory tire experiments was designed and performed to validate the physical significance of LuGre tire model parameters and to study how they behave under typical load, inflation pressure, excitation frequency, and amplitude conditions. An empirical method was developed to accommodate the effects of water film thickness on tire/pavement friction in the LuGre model. The results of the sensitivity analysis and the experiments to directly estimate the model parameters were used to identify and quantify appropriate modifications to the measurement mechanisms of PFMDs that can be introduced to improve the comparability of their results. Friction experiments performed after introducing such modifications to the LWST showed an average reduction of 20% in the deviations between the results of LWST and RFT measurements. The research carried out in this dissertation is significant because it: (i) identified the deficiencies in the current method for harmonizing PFMD measurements and the underlying reasons for these deficiencies, (ii) emphasized the importance of a standardization approach that regulates the physical condition of PFMDs, in order to achieve universal comparability of tire/pavement friction measurements, (iii) validated that the LuGre tire model is a tire/pavement friction model capable of facilitating a better standardization approach, and, (iv) initialized the development of a physically meaningful harmonization procedure for PFMDs.
7

Modeling, simulation and robust control of an electro-pneumatic actuator for a variable geometry turbocharger

Mehmood, Adeel 22 November 2012 (has links) (PDF)
The choice of technology for automotive actuators is driven by the need of high power to size ratio. In general, electro-pneumatic actuators are preferred for application around the engine as they are compact, powerful and require simple controlling devices. Specially, Variable Geometry Turbochargers (VGTs) are almost always controlled with electro-pneumatic actuators. This is a challenging application because the VGT is an important part of the engine air path and the latter is responsible for intake and exhaust air quality and exhaust emissions control. With government regulations on vehicle pollutant emissions getting stringent by the year, VGT control requirements have also increased. These regulations and requirements can only be fulfilled with precise dynamic control of the VGT through its actuator. The demands on actuator control include robustness against uncertainty in operating conditions, fast and smooth positioning without vibration, limited number of measurements. Added constraints such as nonlinear dynamic behavior of the actuator, friction and varying aerodynamic forces in the VGT render classical control methods ineffective. These are the main problems that form the core of this thesis.In this work, we have addressed the above mentioned problems, using model based control complemented with robust control methods to overcome operational uncertainties and parametric variations. In the first step, a detailed physical model of an electro-pneumatic actuator has been developed; taking into account the nonlinear characteristics originating from air compressibility and friction. Means to compensate for aerodynamic force have been studied and implemented in the next step. These include model parametric adaptation and one dimensional CFD (Computational Fluid Dynamics) modeling. The complete model has been experimentally validated and a sensitivity analysis has been conducted to identify the parameters which have the greatest impact upon the actuator's behavior. The detailed simulation model has then been simplified to make it suitable for control purposes while keeping its essential behavioral characteristics (i.e. transients and dynamics). Next, robust controllers have been developed around the model for the control objective of accurate actuator positioning in presence of operational uncertainty. An important constraint in commercial actuators is that they provide output feedback only, as they are only equipped with low-cost position sensors. This hurdle has been overcome by introducing observers in the control loop, which estimate other system states from the output feedback. The estimation and control algorithms have been validated in simulation and experimentally on diesel engine test benches.
8

Modeling, simulation and robust control of an electro-pneumatic actuator for a variable geometry turbocharger / Modelisation, simulation et commande robuste d'un actionneur électropneumatique pour le pilotage d'un turbocompresseur à géométrie variable.

Mehmood, Adeel 22 November 2012 (has links)
Les actionneurs électropneumatiques sont très utilisés dans l'industrie automobile car ils offrent de grands avantages, en termes d'encombrement, de puissance élevée et de simplicité de commande. Ces actionneurs sont utilisés plus particulièrement pour le contrôle des Turbocompresseurs à Géométrie Variable (TGV). Le TGV joue un rôle très important dans les performances de la boucle d'air du moteur, en particulier sur la qualité de l'air à l'admission et à l'échappement. Les nouvelles réglementations gouvernementales concernant les émissions polluantes des véhicules ont poussé les équipementiers automobiles à s'intéresser davantage au contrôle du Turbocompresseur à Géométrie Variable. Ces exigences ne peuvent pas être realisées à travers des techniques classiques de contrôle de type PID. En effet, le contrôle doit tenir compte de la complexité du modèle et de ses incertitudes ainsi que des exigences en termes de performances statiques et dynamiques et du nombre limité de mesures. De plus, il faut également tenir compte des conditions agressives dans lesquelles travaillent l'actionneur, notamment la température, les forces de frottement et les forces aérodynamiques à l'entrée du turbo. Dans le cadre de cette thèse, ce sont tous ces aspects qui ont motivé notre travail de modélisation et de commande robuste de l'actionneur électropneumatique du turbo. Dans un premier temps, nous avons établi un modèle de simulation de l'actionneur. Nous avons commencé par élaborer un modèle physique détaillé de l'actionneur, en prenant en compte les caractéristiques non linéaires provenant de la compressibilité de l'air et du frottement. Ensuite, deux modèles des forces aérodynamiques qui agissement sur l'actionneur ont été proposés. Le modèle global de l'actionneur a été validé expérimentalement et une analyse de sensibilité expérimentale a été menée sur plusieurs actionneurs afin d'identifier les paramètres ayant le plus d'impact sur les performances de l'actionneur. Dans un second temps, nous avons proposé une simplification du modèle obtenu dans le but de le rendre utilisable pour le contrôle, tout en préservant ses caractéristiques statiques et dynamiques. Enfin, nous nous sommes intéressés à la résolution du problème de commande robuste par retour de sortie de l'actionneur. Les algorithmes de contrôle et d'estimation élaborés ont été validés d'abord par des simulations, puis expérimentalement sur un banc d'essai moteur. / The choice of technology for automotive actuators is driven by the need of high power to size ratio. In general, electro-pneumatic actuators are preferred for application around the engine as they are compact, powerful and require simple controlling devices. Specially, Variable Geometry Turbochargers (VGTs) are almost always controlled with electro-pneumatic actuators. This is a challenging application because the VGT is an important part of the engine air path and the latter is responsible for intake and exhaust air quality and exhaust emissions control. With government regulations on vehicle pollutant emissions getting stringent by the year, VGT control requirements have also increased. These regulations and requirements can only be fulfilled with precise dynamic control of the VGT through its actuator. The demands on actuator control include robustness against uncertainty in operating conditions, fast and smooth positioning without vibration, limited number of measurements. Added constraints such as nonlinear dynamic behavior of the actuator, friction and varying aerodynamic forces in the VGT render classical control methods ineffective. These are the main problems that form the core of this thesis.In this work, we have addressed the above mentioned problems, using model based control complemented with robust control methods to overcome operational uncertainties and parametric variations. In the first step, a detailed physical model of an electro-pneumatic actuator has been developed; taking into account the nonlinear characteristics originating from air compressibility and friction. Means to compensate for aerodynamic force have been studied and implemented in the next step. These include model parametric adaptation and one dimensional CFD (Computational Fluid Dynamics) modeling. The complete model has been experimentally validated and a sensitivity analysis has been conducted to identify the parameters which have the greatest impact upon the actuator's behavior. The detailed simulation model has then been simplified to make it suitable for control purposes while keeping its essential behavioral characteristics (i.e. transients and dynamics). Next, robust controllers have been developed around the model for the control objective of accurate actuator positioning in presence of operational uncertainty. An important constraint in commercial actuators is that they provide output feedback only, as they are only equipped with low-cost position sensors. This hurdle has been overcome by introducing observers in the control loop, which estimate other system states from the output feedback. The estimation and control algorithms have been validated in simulation and experimentally on diesel engine test benches.

Page generated in 0.0611 seconds