• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Force-Amplifying Compliant Mechanisms For Micromachined Resonant Accelerometers

Madhavan, Shyamsananth 01 1900 (has links) (PDF)
This thesis work provides an insight into the design of Force-amplifying Compliant Mechanisms (FaCMs) that are integrated with micromachined resonant accelerometers to increase their sensitivity. An FaCM, by mechanically amplifying the inertial force, enhances the shift in the resonance frequency of the beams used for sensing the acceleration whose effect causes an axial force on the beams. An extensive study on different configurations of resonators namely, single beam resonator, single-ended tuning fork (SETF), and double-ended tuning fork (DETF), is carried out to gain insights about their resonant behavior. The influence of the boundary conditions on the sensor’s sensitivity emerged from the study. We found that not only the force-amplification factor but also the multi-axial stiffness of the FaCM and proof-mass influence the resonance frequency of the resonator as well as the bandwidth of the modified sensor for certain configurations but not all. Thus, four lumped parameters were identified to quantify the effectiveness of an FaCM. These parameters determine the boundary condition of the sensing beams and also the forces and the moment transmitted to them. Also presented in this work is a computationally efficient model, called the Lumped Parameter Model (LPM) for evaluation of the sensitivity. An analytical expression for the frequency-shift of the sensing resonator beams is obtained by considering the FaCM stiffness parameters as well as the lumped stiffness of the suspension of the inertial mass. Various FaCMs are evaluated and compared to understand how the four lumped parameters influence the sensor’s sensitivity. The FaCMs are synthesized using topology optimization to maximize the net amplification factor with the volume constraint. One of the FaCMs outperforms the lever by a factor of six. Microfabrication of resonant accelerometer coupled with FaCM and comb-drive actuator is carried out using a silicon-on-insulator process. Finally, the selection map technique, a compliant mechanism redesign methodology is used for enhancing the amplification of FaCMs. This technique provides scope for further design improvement in FaCMs for given sensor specifications.
12

A Coupled CFD-Lumped Parameter Model of the Human Circulation: Elucidating the Hemodynamics of the Hybrid Norwood Palliative Treatment and Effects of the Reverse Blalock-Taussic Shunt Placement and Diameter

Ceballos, Andres 01 January 2015 (has links)
The Hybrid Norwood (HN) is a relatively new first stage procedure for neonates with Hypoplastic Left Heart Syndrome (HLHS), in which a sustainable univentricular circulation is established in a less invasive manner than with the standard procedure. A computational multiscale model of such HLHS circulation following the HN procedure was used to obtain detailed hemodynamics. Implementation of a reverse-BT shunt (RBTS), a synthetic bypass from the main pulmonary to the innominate artery placed to counteract aortic arch stenosis, and its effects on local and global hemodynamics were studied. A synthetic and a 3D reconstructed, patient derived anatomy after the HN procedure were utilized, with varying degrees of distal arch obstruction, or stenosis, (nominal and 90% reduction in lumen) and varying RBTS diameters (3.0, 3.5, 4.0 mm). A closed lumped parameter model (LPM) for the peripheral or distal circulation coupled to a 3D Computational Fluid Dynamics (CFD) model that allows detailed description of the local hemodynamics was created for each anatomy. The implementation of the RBTS in any of the chosen diameters under severe stenosis resulted in a restoration of arterial perfusion to near-nominal levels. Shunt flow velocity, vorticity, and overall wall shear stress levels are inverse functions of shunt diameter, while shunt perfusion and systemic oxygen delivery correlates positively with diameter. No correlation of shunt diameter with helicity was recorded. In the setting of the hybrid Norwood circulation, our results suggest: (1) the 4.0mm RBTS may be more thrombogenic when implemented in the absence of severe arch stenosis and (2) the 3.0mm and 3.5mm RBTS may be a more suitable alternative, with preference to the latter since it provides similar hemodynamics at lower levels of wall shear stress.
13

Θερμική ανάλυση ασύγχρονου κινητήρα στην μόνιμη κατάσταση λειτουργίας με την μέθοδο των συγκεντρωμένων παραμέτρων / Thermal analysis of induction motor in steady state using lumped parameters

Λυγκώνης, Ηλίας 19 October 2012 (has links)
Η θερμική ανάλυση είναι μια σημαντική περιοχή μελέτης και γίνεται περισσότερο σημαντική για την σχεδίαση ηλεκτρικών μηχανών εξαιτίας της ανάγκης για μείωση του όγκου των υλικών και του κόστους κατασκευής τους καθώς και για την αύξηση της απόδοσής τους. Είναι εξίσου σημαντική με την ηλεκτρομαγνητική ανάλυση μιας και η θέρμανση της μηχανής θα οριοθετήσει την ονομαστική της ισχύ καθώς και την διάρκεια ζωής της μόνωσης. Στόχος της παρούσας διπλωματικής εργασίας είναι η εύρεση της κατανομής της θερμοκρασίας στο εσωτερικό ενός ασύγχρονου τριφασικού κινητήρα στη μόνιμη κατάσταση λειτουργίας του με τη μέθοδο των συγκεντρωμένων παραμέτρων. Στο πρώτο κεφάλαιο αναφέρονται βασικές έννοιες της θερμοδυναμικής. Γίνεται αναφορά σε διάφορους συντελεστές, παρουσιάζονται οι θερμοδυναμικοί νόμοι και γίνεται σύντομη αναφορά στους μηχανισμούς μετάδοσης θερμότητας. Στο δεύτερο κεφάλαιο δίνεται η αναλυτική περιγραφή των μηχανισμών μετάδοσης θερμότητας και παρουσιάζεται ένα απλό δίκτυο μοντελοποίησης με ισοδύναμες θερμικές αντιστάσεις. Στο τρίτο κεφάλαιο παρουσιάζεται σύντομα η δομή, η αρχή λειτουργίας και οι τύποι μιας ασύγχρονης μηχανής. Εδώ επίσης αναφέρονται και οι διάφορες μορφές απωλειών ενέργειας κατά την λειτουργία μιας τριφασικής ασύγχρονης μηχανής. Παρουσιάζεται ακόμη ο υπό μελέτη κινητήρας και αναφέρονται τα θερμοστοιχεία που χρησιμοποιούνται στην πειραματική διαδικασία. Στο τέταρτο κεφάλαιο περιγράφεται η μέθοδος θερμικής ανάλυσης με χρήση ισοδυνάμου κυκλώματος θερμικών αντιστάσεων για την μόνιμη κατάσταση. Στη συνέχεια δίνεται το προτεινόμενο κύκλωμα και παρουσιάζονται αναλυτικά οι ισοδύναμες θερμικές αντιστάσεις του μοντέλου. Τέλος στο πέμπτο κεφάλαιο παρατίθενται τα αποτελέσματα της θερμικής ανάλυσης, γίνεται σύγκριση με τα πειραματικά δεδομένα θερμοκρασιακών τιμών που πάρθηκαν από τα θερμοστοιχεία και ακολουθεί η διαδικασία της παραμετροποίησης στους διάφορους συντελεστές που χρησιμοποιήθηκαν είτε υπολογίστηκαν κατά την ανάλυση. / Thermal analysis is an important design area and becoming more important part of the electric motor design process due to the push for reduced weights and costs and increased efficiency. Thermal analysis is of equal importance as the electromagnetic design of the machine, because the temperature rise of the machine eventually determines the maximum output power. The purpose of this study is to record the temperature distribution of the internal parts of an induction motor at steady state using an equivalent thermal circuit with lumped parameters. The first chapter is an introduction of the thermodynamic theory. The laws of thermodynamics are described and there is a brief report of heat transfer mechanisms. The second chapter describes analytically the heat transfer mechanisms. Also, an example of modelling using thermal equivalent resistances is given. The third chapter introduces shortly the operational principles of an induction machine. Here are also referred the various losses that occur during the rotation of an induction motor. The studied induction motor, with the modified stator winding to include thermocouples, is shown. The fourth chapter introduces the method of thermal analysis using thermal equivalent circuit with lumped parameters. The proposed model is given and its components are described in particular. At last, in the fifth chapter the results of temperature distribution are given and compared with experimental data of temperature values that are acquired using the thermocouples. Here also takes apart the parameterising of the various coefficients that were used or calculated during this study.
14

Methodologies for Assessment of Impact Dynamic Responses

Ranadive, Gauri Satishchandra January 2014 (has links) (PDF)
Evaluation of the performance of a product and its components under impact loading is one of the key considerations in design. In order to assess resistance to damage or ability to absorb energy through plastic deformation of a structural component, impact testing is often carried out to obtain the 'Force - Displacement' response of the deformed component. In this context, it may be noted that load cells and accelerometers are commonly used as sensors for capturing impact responses. A drop-weight impact testing set-up consisting of a moving impactor head with a lightweight piezoresistive accelerometer and a strain gage based compression load cell mounted on it is used to carry out the impact tests. The basic objective of the present study is to assess the accuracy of responses recorded by the said transducers, when these are mounted on a moving impactor head. In the present work, a novel approach of theoretically evaluating the responses obtained from this drop-weight impact testing set-up for different axially loaded specimen has been executed with the formulation of an equivalent lumped parameter model (LPM) of the test set-up. For the most common configuration of a moving impactor head mounted load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. Initially, a 3-DOF (degrees-of-freedom) LPM is considered to represent a given impact testing set-up with the test specimen represented with a nonlinear spring. Both the load cell and the accelerometer are represented with linear springs, while the impacting unit comprising an impactor head (hammer) and a main body with the load cell in between are modelled as rigid masses. An experimentally obtained force-displacement response is assumed to be a nearly true behaviour of a specimen. By specifying an impact velocity to the rigid masses as an initial condition, numerical solution of the governing differential equations is obtained using Implicit (Newmark-beta) and Explicit (Central difference) time integration techniques. It can be seen that the model accurately reproduces the input load-displacement behaviour of the nonlinear spring corresponding to the tested component, ensuring the accuracy of these numerical methods. The nonlinear spring representing the test specimen is approximated in a piecewise linear manner and the solution strategy adopted and implemented in the form of a MATLAB script is shown to yield excellent reproduction of the assumed load-displacement behaviour of the test specimen. This prediction also establishes the accuracy of the numerical approach employed in solving the LPM system. However, the spring representing the load cell yields a response that qualitatively matches the assumed input load-displacement response of the test specimen with a lower magnitude of peak load. The accelerometer, it appears, may be capable of predicting more closely the load experienced by a specimen provided an appropriate mass of the impactor system i.e. impacting unit, is chosen as the multiplier for the acceleration response. Error between input and computed (simulated) responses is quantified in terms of root mean square error (RMSE). The present study additionally throws light on the dependence of time step of integration on numerical results. For obtaining consistent results, estimation of critical time step (increment) is crucial in conditionally stable central difference method. The effect of the parameters of the impact testing set-up on the accuracy of the predicted responses has been studied for different combinations of main impactor mass and load cell stiffness. It has been found that the load cell response is oscillatory in nature which points out to the need for suitable filtering for obtaining the necessary smooth variation of axial impact load with respect to time as well as deformation. Accelerometer response also shows undulations which can similarly be observed in the experimental results as well. An appropriate standard SAE-J211 filter which is a low-pass Butterworth filter has been used to remove oscillations from the computed responses. A load cell is quite capable of predicting the nature of transient response of an impacted specimen when it is part of the impacting unit, but it may substantially under-predict the magnitudes of peak loads. All the above mentioned analysis for a 3 DOF model have been performed for thin-walled tubular specimens made of mild steel (hat-section), an aluminium alloy (square cross-section) and a glass fibre-reinforced composite (circular cross-section), thus confirming the generality of the inferences drawn on the computed responses. Further, results obtained using explicit and implicit methodologies are compared for three specimens, to find the effect, if any, on numerical solution procedure on the conclusions drawn. The present study has been further used for investigating the effects of input parameters (i.e. stiffness and mass of the system components, and impact velocity) on the computed results of transducers. Such an investigation can be beneficial in designing an impact testing set-up as well as transducers for recording impact responses. Next, the previous 3 DOF model representing the impact testing set-up has been extended to a 5 DOF model to show that additional refinement of the original 3 DOF model does not substantially alter the inferences drawn based on it. In the end, oscillations observed in computed load cell responses are analysed by computing natural frequencies for the 3 DOF lumped parameter model. To conclude the present study, a 2 DOF LPM of the given impact testing set-up with no load cell has been investigated and the frequency of oscillations in the accelerometer response is seen to increase corresponding to the mounting resonance frequency of the accelerometer. In order to explore the merits of alternative impact testing set-ups, LPMs have been formulated to idealize test configurations in which the load cell is arranged to come into direct contact with the specimen under impact, although the accelerometer is still mounted on the moving impactor head. One such arrangement is to have the load cell mounted stationary on the base under the specimen and another is to mount the load cell on the moving impactor head such that the load cell directly impacts the specimen. It is once again observed that both these models accurately reproduce the input load-displacement behaviour of the nonlinear spring corresponding to the tested component confirming the validity of the model. In contrast to the previous set-up which included a moving load cell not coming into contact with the specimen, the spring representing the load cell in these present cases yields a response that more closely matches the assumed input load-displacement response of a test specimen suggesting that the load cell coming into direct contact with the specimen can result in a more reliable measurement of the actual dynamic response. However, in practice, direct contact of the load cell with the specimen under impact loading is likely to damage the transducer, and hence needs to be mounted on the moving head, resulting in a loss of accuracy, which can be theoretically estimated and corrected by the methodology investigated in this work.
15

Design, simulation, and testing of an electric propulsion cluster frame

Bek, Jeremy January 2021 (has links)
In general, electric propulsion offers very high efficiency but relatively low thrust. To remedy this, several ion engines can be assembled in a clustered configuration and operated in parallel. This requires the careful design of a frame to accommodate the individual propulsion systems. This frame must be modular to be used in different cluster sizes, and verify thermal and mechanical requirements to ensure the nominal operation of the thrusters. The present report aims to show the design process of such a frame, from preliminary modelling to the experimental study of a prototype. This document features an overview of the iterative design process driven by thermal simulations rendered on COMSOL Multiphysics. This process led to the conception of a 2-thruster and 4-thruster cluster frame. A lumped-parameter model of the electric propulsion system was also created to model its complex thermal behaviour. In addition, the 2-thruster frame was studied mechanically with analytical calculations and simulations of simple load cases on SolidWorks. Lastly, a prototype based on the 2-thruster frame model was assembled. The prototype was used to conduct temperature measurements while hosting two operating thrusters inside a vacuum chamber. The temperature distribution in the cluster was measured, and compared to simulation results. Thermal simulations of the 2-thruster and 4-thruster frame showed promising results, while mechanical simulations of the 2-thruster version met all requirements. Moreover, experimental results largely agreed with thermal simulations of the prototype. Finally, the lumped-element model proved instrumental in calibrating the models, with its high flexibility and quick computation time. / Generellt erbjuder elektrisk framdrivning hög verkningsgrad men relativt låg dragkraft. För att avhjälpa detta kan flera jonmotorer sättas samman i en klusterkonfiguration och drivs parallellt. Detta kräver en noggrann utformning av en ram för att rymma de enskilda framdrivningssystemen. Denna ram måste vara modulär för att kunna användas i olika klusterstorlekar och verifiera termiska och mekaniska krav för att säkerställa den nominella driften av motorerna. Föreliggande rapport syftar till att visa designprocessen för en sådan ram, från preliminär modellering till experimentell studie av en prototyp. Detta dokument innehåller en översikt över den iterativa designprocessen, driven av termiska simuleringar gjorda med COMSOL Multiphysics, som ledde till uppfattningen av en 2 motorer och 4 motorer ram. En klumpelementmodell av jonmotorn skapades också för att modellera dess komplexa termiska beteende. Dessutom var den 2 motorer ram studeras mekaniskt med analytiska beräkningar och simuleringar av enkla laddafall med SolidWorks. Slutligen monterades en prototyp baserad på den 2 motorer rammodellen. Prototypen användes för att göra temperaturmätningar medan den är värd för 2 jonmotorer i en vakuumkammare. Temperaturfördelningen i klustret mättes och jämfördes med simuleringsresultat. Termiska simuleringar av den 2 motorer och 4 motorer ramen visade lovande resultat, medan mekaniska simuleringar av den 2 motorer versionen klarade alla krav. Dessutom överensstämde experimentella resultat till stor del med termiska simuleringar av prototypen. Slutligen var klumpelementmodellen mycket användbar för att kalibrera de andra modellerna med sin höga flexibilitet och snabba beräkningstid.
16

MECHANICS AND DESIGN OF POLYMERIC METAMATERIAL STRUCTURES FOR SHOCK ABSORPTION APPLICATIONS

Amin Joodaky (9226604) 12 August 2020 (has links)
<div>This body of work examines analytical and numerical models to simulate the response of structures in shock absorption applications. Specifically, the work examines the prediction of cushion curves of polymer foams, and a topological examination of a $\chi$ shape unit cell found in architected mechanical elastomeric metamaterials. The $\chi$ unit cell exhibits the same effective stress-strain relationship as a closed cell polymer foam. Polymer foams are commonly used in the protective packaging of fragile products. Cushion curves are used within the packaging industry to characterize a foam's impact performance. These curves are two-dimensional representations of the deceleration of an impacting mass versus static stress. The main drawback with cushion curves is that they are currently generated from an exhaustive set of experimental test data. This work examines modeling the shock response using a continuous rod approximation with a given impact velocity in order to generate cushion curves without the need of extensive testing. In examining the $\chi$ unit cell, this work focuses on the effects of topological changes on constitutive behavior and shock absorbing performance. Particular emphasis is placed on developing models to predict the onset of regions of quasi-zero-modulus (QZM), the length of the QZM region and the cushion curve produced by impacting the unit cell. The unit cell's topology is reduced to examining a characteristic angle, defining the internal geometry with the cell, and examining the effects of changing this angle.</div><div>However, the characteristic angle cannot be increased without tradeoffs; the cell's effective constitutive behavior evolves from long regions to shortened regions of quasi-zero modulus. Finally, this work shows that the basic $\chi$ unit cell can be tessellated to produce a nearly equivalent force deflection relationship in two directions. The analysis and results in this work can be viewed as new framework in analyzing programmable elastomeric metamaterials that exhibit this type of nonlinear behavior for shock absorption.</div>

Page generated in 0.077 seconds