• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 2
  • Tagged with
  • 52
  • 52
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Involvement of JAK/STAT Signaling and a Basement Membrane-Associated Protein during Air Sac Primordium Development in Drosophila Melanogaster

Powers, Nathan Anthony 01 October 2018 (has links)
Tumor metastasis currently presents the greatest obstacle for effective cancer remediation. Metastatic growth necessitates both degradation of a specialized form of extracellular matrix (ECM) known as the basement membrane (BM) and the invasion of surrounding tissues thereafter. The thoracic air sacs of fruit flies (Drosophila melanogaster), which develop and operate in a fashion comparable to the human lung, provide a unique model for identifying and characterizing factors that contribute to its own development as well as tumoral invasion. We investigated the involvement of both Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) signaling and a BMassociated protein during the development of air sac primordia (ASPs), the precursors to Drosophila air sacs. We find that JAK/STAT signaling occurs in ASP tip cells and that misexpression of core pathway components via the GAL4/UAS system negatively impacts ASP development. Further, we identify Unpaired 2 (Upd2) as the primary activating ligand for JAK/STAT activity in the ASP. Knockdown of the BM-associated protein using GAL4 drivers associated with a fibroblast growth factor (FGF) receptor gene, breathless (btl), and segment polarity gene, patched (ptc), prevented larval development beyond the second larval instar (L2). Knockdown of the BM-associated protein in the wing also produced bristle defects, but its overexpression did not have an effect anywhere other than in the ASP, where the proportion of mutant phenotypes increased significantly (p < .0001) in response. Finally, we find that collagen IV localization was unaffected by knockdown of the BM-associated protein. Together, our data constitute a significant step forward in understanding the role of both this BM-associated protein and JAK/STAT signaling in the ASP and similar mammalian structures.
22

Does maternal nicotine exposure during gestation and lactation change the oxidant-antioxidant status of the lungs of the offsprings and is tomato juice protecting the lungs of the offsprings?

Abdulkarim, Kayigire Xavier. January 2009 (has links)
<p>Nicotine exposure to the fetus through tobacco smoking or nicotine replacement therapy during the whole period of gestation and lactation causes diverse effects on fetal and neonatal lung development, integrity and maturation which compromise the gas exchange function of the lungs and renders this vital organ susceptible to gradual damage and different diseases in latter life. Maternal nicotine exposure during gestation and lactation results in gradual destruction of the lung parenchyma, and this leads to the combination of many small air sacs in one bigger alveoli which is a sign of emphysema. Many researchers speculated that the way in which, nicotine causes emphysema and other damage, is by inducing the formation of many reactive oxygen species (ROS), and creating an imbalance between the oxidants and the antioxidants of the body, which is termed oxidative stress. The aim of this study was to assess the effects of nicotine exposure on the lung of the fetal and neonate rat during gestation and lactation as gas exchanger, and also to see whether the supplementation of tomato juice containing lycopene, a powerful carotenoid antioxidant could protect the lungs against these effects of maternal nicotine exposure. In this study pregnant rats have been divided into 4 groups: a group which received nicotine (1mg/kg body weight/day) subcutaneously, a group that received the tomato juice only (6mg/kg body weight/day per os), a third group that received the combination of tomato juice ( 6mg /kg body weight/ day per os) and nicotine (1mg/kg body weight /day subcutaneously ) . The control group that received saline (1mg/kg body weight /day) subcutaneously and water. The injections were done during pregnancy and lactation until weaning at postnatal day 21. The results showed that maternal nicotine exposure during gestation and lactation leads to a gradual damage of the lung parenchyma and slower formation of the alveoli during the equilibrated phase of the lung growth leading to a decrease in the internal surface area required for gas exchange. Supplementation with tomato juice during gestation and lactation prevents all the adverse effects of maternal nicotine exposure on the lungs of the offspring. Since nicotine induce an increase in the oxidant levels of the mother and the fetus, my results imply that lycopene protected the lungs of the offsprings against the oxidants and thus against changes in the program that controls lung development as the animals age. This is supported by the observation that at postnatal day 84 the antioxidant.</p>
23

Premature aging of the lungs of the offspring induced by maternal nicotine exposure during gestation and lactation: protective effects of tomato juice

Mutemwa, Muyunda January 2012 (has links)
<p>Tobacco smoking during pregnancy and lactation is a common habit and accounts for a significant percentage of fetal morbidity and mortality worldwide. The offspring is as a result exposed to nicotine through the blood and the milk of the mother. Nicotine is thus expected to interact with the developing fetus and the offspring of mothers who smoke or use NRT for smoking cessation, resulting in the interference with normal fetal and neonatal lung development. Maternal cigarette smoke or nicotine exposure produces adverse effects in the lungs of offspring, these include / intrauterine growth retardation, low birth weight, premature birth, reduced pulmonary function at birth, and a high occurrence of respiratory illnesses after birth. This study aimed at investigating&nbsp / the effects of maternal nicotine exposure during gestation and lactation on lung development in the offspring / to establish whether tomato juice can have protective effects on the fetal lung&nbsp / development and function in the offspring / and to determine if nicotine cases premature aging of the lungs of the offspring. It was therefore shown that maternal exposure to nicotine during&nbsp / gestation and lactation ad no significant effect on the growth parameters of the offspring. Maternal nicotine exposure during gestation and lactation had no effect on the growth parameters of&nbsp / the offspring, but resulted in compromised lung structure and function. The morphometric results demonstrated decrease in alveolar number, increase in alveolar size, and decrease in lung&nbsp / parenchyma of the nicotine exposed animals showing a gradual deterioration of the lung parenchyma. Structural alterations include emphysematous lesions, where the latter was&nbsp / accompanied by an increase in alveolar size (Lm), and a decrease in the tissue volume of the lung parenchyma. Thickening of alveolar walls was also evident and serves as an indication of&nbsp / remodeling of the extracellular matrix, also a characteristic of emphysema. A consequence of the gradual deterioration of the lung parenchyma is a decrease in the alveolar surface area available for gas exchange. The present study showed that the emphysematous lesions were conceivably a result of a reduced rate of cell proliferation accompanied by the increase in&nbsp / senescent cells numbers in the alveolar walls of the exposed offspring. The data of this study suggests that maternal nicotine exposure during gestation and lactation induces premature&nbsp / aging of the lungs of the offspring rendering the lungs of the offspring more susceptible to disease later in life. Since these structural changes occurred later in the life of the offspring and long&nbsp / after nicotine withdrawal, it is suggested that it is programmed during gestation and lactation. Smoking and NRT result in an increased load of oxidants in the mother and fetus. It also reduces&nbsp / the level of anti-oxidants and thereby compromising the ability of the mother to protect the fetus. It is hypothesized that this oxidant-antioxidant imbalance will program the lungs to age&nbsp / prematurely. The supplementation of the mother&rsquo / s diet with tomato juice, rich in lycopene, other anti-oxidants such as vitamin C, as well as phytonutrients protected the lungs of the offspring&nbsp / against the adverse effects of maternal nicotine exposure. This supports the hypothesis mentioned above. The study further showed that the effects of grand-maternal nicotine exposure during gestation and lactation on the lungs of the F1 offspring is also transferred to the F2 offspring. This is most likely via the paternal and maternal germ line. Since tomato juice supplementation of the mother&rsquo / s diet with tomato juice prevented&nbsp / the adverse effects of maternal nicotine exposure on the lungs of the offspring, it is conceivable that it will prevent transfer of these changes to the F2 generation.&nbsp / </p>
24

Lung Clearance Index as a Marker of Ventilation Inhomogeneity in Early Childhood with Health and Disease

Brown, Meghan 05 December 2011 (has links)
Rationale: Ventilation inhomogeneity (VI) may be an early sign of obstructive airway disease. The lung clearance index (LCI) has been suggested as a sensitive marker of VI, although it has not been well characterized in young children in health and in those with CF and asthma. Objective: To determine if LCI can detect VI in asymptomatic infants and preschool-age subjects with CF or wheeze/asthma compared to healthy controls. Methods: Sulphur hexafluoride (SF6) multiple breath washout (MBW) testing was completed in all subjects. Results: LCI was found to be dependent on age in a large healthy cohort. Accounting for age, LCI was significantly elevated in disease groups compared to healthy controls in early childhood, illustrating early presence of VI in wheezy infants and the progression of disease in CF. Furthermore, the effects of breathing pattern and the variability of MBW parameters showed positive associations with age and VI.
25

Lung Clearance Index as a Marker of Ventilation Inhomogeneity in Early Childhood with Health and Disease

Brown, Meghan 05 December 2011 (has links)
Rationale: Ventilation inhomogeneity (VI) may be an early sign of obstructive airway disease. The lung clearance index (LCI) has been suggested as a sensitive marker of VI, although it has not been well characterized in young children in health and in those with CF and asthma. Objective: To determine if LCI can detect VI in asymptomatic infants and preschool-age subjects with CF or wheeze/asthma compared to healthy controls. Methods: Sulphur hexafluoride (SF6) multiple breath washout (MBW) testing was completed in all subjects. Results: LCI was found to be dependent on age in a large healthy cohort. Accounting for age, LCI was significantly elevated in disease groups compared to healthy controls in early childhood, illustrating early presence of VI in wheezy infants and the progression of disease in CF. Furthermore, the effects of breathing pattern and the variability of MBW parameters showed positive associations with age and VI.
26

Does maternal nicotine exposure during gestation and lactation change the oxidant-antioxidant status of the lungs of the offsprings and is tomato juice protecting the lungs of the offsprings?

Abdulkarim, Kayigire Xavier. January 2009 (has links)
<p>Nicotine exposure to the fetus through tobacco smoking or nicotine replacement therapy during the whole period of gestation and lactation causes diverse effects on fetal and neonatal lung development, integrity and maturation which compromise the gas exchange function of the lungs and renders this vital organ susceptible to gradual damage and different diseases in latter life. Maternal nicotine exposure during gestation and lactation results in gradual destruction of the lung parenchyma, and this leads to the combination of many small air sacs in one bigger alveoli which is a sign of emphysema. Many researchers speculated that the way in which, nicotine causes emphysema and other damage, is by inducing the formation of many reactive oxygen species (ROS), and creating an imbalance between the oxidants and the antioxidants of the body, which is termed oxidative stress. The aim of this study was to assess the effects of nicotine exposure on the lung of the fetal and neonate rat during gestation and lactation as gas exchanger, and also to see whether the supplementation of tomato juice containing lycopene, a powerful carotenoid antioxidant could protect the lungs against these effects of maternal nicotine exposure. In this study pregnant rats have been divided into 4 groups: a group which received nicotine (1mg/kg body weight/day) subcutaneously, a group that received the tomato juice only (6mg/kg body weight/day per os), a third group that received the combination of tomato juice ( 6mg /kg body weight/ day per os) and nicotine (1mg/kg body weight /day subcutaneously ) . The control group that received saline (1mg/kg body weight /day) subcutaneously and water. The injections were done during pregnancy and lactation until weaning at postnatal day 21. The results showed that maternal nicotine exposure during gestation and lactation leads to a gradual damage of the lung parenchyma and slower formation of the alveoli during the equilibrated phase of the lung growth leading to a decrease in the internal surface area required for gas exchange. Supplementation with tomato juice during gestation and lactation prevents all the adverse effects of maternal nicotine exposure on the lungs of the offspring. Since nicotine induce an increase in the oxidant levels of the mother and the fetus, my results imply that lycopene protected the lungs of the offsprings against the oxidants and thus against changes in the program that controls lung development as the animals age. This is supported by the observation that at postnatal day 84 the antioxidant.</p>
27

Premature aging of the lungs of the offspring induced by maternal nicotine exposure during gestation and lactation: protective effects of tomato juice

Mutemwa, Muyunda January 2012 (has links)
<p>Tobacco smoking during pregnancy and lactation is a common habit and accounts for a significant percentage of fetal morbidity and mortality worldwide. The offspring is as a result exposed to nicotine through the blood and the milk of the mother. Nicotine is thus expected to interact with the developing fetus and the offspring of mothers who smoke or use NRT for smoking cessation, resulting in the interference with normal fetal and neonatal lung development. Maternal cigarette smoke or nicotine exposure produces adverse effects in the lungs of offspring, these include / intrauterine growth retardation, low birth weight, premature birth, reduced pulmonary function at birth, and a high occurrence of respiratory illnesses after birth. This study aimed at investigating&nbsp / the effects of maternal nicotine exposure during gestation and lactation on lung development in the offspring / to establish whether tomato juice can have protective effects on the fetal lung&nbsp / development and function in the offspring / and to determine if nicotine cases premature aging of the lungs of the offspring. It was therefore shown that maternal exposure to nicotine during&nbsp / gestation and lactation ad no significant effect on the growth parameters of the offspring. Maternal nicotine exposure during gestation and lactation had no effect on the growth parameters of&nbsp / the offspring, but resulted in compromised lung structure and function. The morphometric results demonstrated decrease in alveolar number, increase in alveolar size, and decrease in lung&nbsp / parenchyma of the nicotine exposed animals showing a gradual deterioration of the lung parenchyma. Structural alterations include emphysematous lesions, where the latter was&nbsp / accompanied by an increase in alveolar size (Lm), and a decrease in the tissue volume of the lung parenchyma. Thickening of alveolar walls was also evident and serves as an indication of&nbsp / remodeling of the extracellular matrix, also a characteristic of emphysema. A consequence of the gradual deterioration of the lung parenchyma is a decrease in the alveolar surface area available for gas exchange. The present study showed that the emphysematous lesions were conceivably a result of a reduced rate of cell proliferation accompanied by the increase in&nbsp / senescent cells numbers in the alveolar walls of the exposed offspring. The data of this study suggests that maternal nicotine exposure during gestation and lactation induces premature&nbsp / aging of the lungs of the offspring rendering the lungs of the offspring more susceptible to disease later in life. Since these structural changes occurred later in the life of the offspring and long&nbsp / after nicotine withdrawal, it is suggested that it is programmed during gestation and lactation. Smoking and NRT result in an increased load of oxidants in the mother and fetus. It also reduces&nbsp / the level of anti-oxidants and thereby compromising the ability of the mother to protect the fetus. It is hypothesized that this oxidant-antioxidant imbalance will program the lungs to age&nbsp / prematurely. The supplementation of the mother&rsquo / s diet with tomato juice, rich in lycopene, other anti-oxidants such as vitamin C, as well as phytonutrients protected the lungs of the offspring&nbsp / against the adverse effects of maternal nicotine exposure. This supports the hypothesis mentioned above. The study further showed that the effects of grand-maternal nicotine exposure during gestation and lactation on the lungs of the F1 offspring is also transferred to the F2 offspring. This is most likely via the paternal and maternal germ line. Since tomato juice supplementation of the mother&rsquo / s diet with tomato juice prevented&nbsp / the adverse effects of maternal nicotine exposure on the lungs of the offspring, it is conceivable that it will prevent transfer of these changes to the F2 generation.&nbsp / </p>
28

Mesenchyme Induces Embryonic and Induced Pluripotent Stem Cells to a Distal Lung Epithelial Cell Phenotype

Fox, Emily 11 December 2012 (has links)
Derivation of lung epithelial cells from stem cells remains a challenging task, due in part to a lack of understanding of the molecular mediators driving commitment of endoderm to an early lung lineage. Reciprocal signalling between the lung mesenchyme and epithelium is crucial for proper differentiation and branching morphogenesis to occur. We hypothesized that the combination of signalling pathways comprising early epithelial-mesenchymal interactions and the 3-D spatial environment are required for induction of embryonic and induced pluripotent stem cells (ESC and iPSC, respectively) into a lung cell phenotype with the hallmarks of the distal niche. Aggregating early lung mesenchyme with endoderm-induced ESC and iPSC resulted in differentiation to an NKX2.1 and pro-SFTPC positive lineage. The differentiating cells organized into tubular structures and became polarized epithelial cells. Ultrastructure analysis revealed precursors of lamellar bodies, and Sftpb mRNA expression was detected. Quantification of the differentiation using an Nkx2.1-reporter ESC line revealed that 80% were committed to an early lung lineage, a vast improvement over what has previously been published. The FGF growth factor family comprises well-known mediators of growth and differentiation during the development of many organs, including the lung. We found that FGF2 signalling through the FGFR2iiic receptor isoform was mediating the commitment of the stem cells to an early lung epithelial phenotype, as defined by NKX2.1/proSFTPC expression. FGF7 signalling through the FGFR2iiib receptor was found to be important for the maturation and morphogenesis of the NKX2.1/proSFTPC positive lineage, but did not play a role in the initial commitment. The addition of FGF2 to endoderm-induced ESC or iPSC in the absence of mesenchyme was able to commit the cells to an NKX2.1-positive lineage, but no proSFTPC was detected. Furthermore,the cells did not become polarized and no longer organized into tubular structures. These findings suggest that while FGF2 is important for initial commitment, additional mesenchyme components including matrix proteins, supporting cell lineages and other growth factors are crucial for an efficient differentiation to an early lung epithelial cell lineage.
29

MiRacles for babies with pulmonary hypoplasia: the effects of miR-10a and miR-200b on lung development

Visser, Robin 14 January 2016 (has links)
INTRODUCTION: Pulmonary hypoplasia causes high morbidity and mortality in congenital diaphragmatic hernia (CDH) patients. MiR-10a and miR-200b are overexpressed in human CDH lungs. We aimed to define their roles in lung development. METHODS: We profiled miR-10a expression with RT-qPCR and in situ hybridization using a nitrofen rat model for CDH. The effects of miR-10a on airway branching were evaluated in lung explants. MiR-200b’s role in airway branching was assessed in miR-200b knockout lung explants. Crossing miR-200b knockout mice with CFP-E-Cadherin was used to evaluate miR-200b’s effects on epithelial differentiation. RESULTS: Expression of miR-10a was altered in the nitrofen model and miR-10a mimics reversed lung hypoplasia in vitro. Heterozygous miR-200b lung explants displayed reduced airway branching. CFP-E-Cadherin/miR-200b knockout lung explants showed reduced epithelial expression. CONCLUSION: Both miR-10a and miR-200b are critical for lung development and CDH. Normalizing their expression may reverse lung hypoplasia and reduce the associated morbidity and mortality in CDH. / February 2016
30

Signalisation FGF-10/FGFR2b dans les Malformations Adénomatoïdes Kystiques du Poumon (MAKP) / FGF-10 downstream signaling in human Congenital Cystic Adenomatoid Malformation (CCAM)

Lezmi, Guillaume 19 December 2014 (has links)
Les Malformations Adénomatoïdes Kystiques du Poumon (MAKP) sont les malformations pulmonaires congénitales les plus fréquentes. Leur diagnostic est anatomopathologique. Elles sont classées en type I si elles comportent de larges kystes (>2cm), en type II si elles contiennent de multiples kystes plus petits (<1cm). Les MAKP de type III ont un aspect plus solide et contiennent des structures immatures ressemblant au poumon en développement. En général asymptomatiques, les MAKP peuvent se compliquer in utero d'hydramnios ou d'anasarque, à la naissance de détresse respiratoire, et plus tardivement d'infections ou de pneumothorax. Leur potentielle dégénérescence maligne reste débattue. L'origine des MAKP est inconnue. Les avancées récentes suggèrent une anomalie transitoire et focale du développement pulmonaire, qui pourrait être secondaire à une obstruction des voies aériennes. Le rôle du Fibroblast Growth Factor 10 (FGF10), facteur indispensable à la formation des ramifications pulmonaires, est supporté par différents modèles animaux. La surexpression localisée du FGF10 pourrait induire des dilatations kystiques des voies aériennes.L'objectif de ce travail était de déterminer les anomalies moléculaires à l'origine des MAKP.Dans une approche molécule candidate, nous avons comparé par immunohistochimie l'expression du FGF10, de son récepteur le FGFR2b, et d'un de ses inhibiteurs, Sonic Hedgehog (SHH), entre MAKP et tissus témoins. Nous avons également comparé l'expression de l'ARNm du FGF10 dans des cultures de fibroblastes isolés à partir de MAKP et de tissus témoins. Nous avons enfin élaboré un modèle de ligature trachéale in-utéro de lapins fœtaux, afin de modéliser les MAKP et d'étudier in-vivo en fin de gestation (J29/31) les conséquences morphologiques et moléculaires d'une obstruction trachéale précoce (J23/31). Dans une approche sans à-priori, nous avons microdissequé des MAKP et des tissus témoins, afin de séparer les compartiments épithélial et mésenchymateux et de comparer les transcriptomes issus de ces 2 compartiments entre MAKP et tissus sains. Nous avons également recherché l'existence d'anomalies génétiques in-situ, en comparant par CGH array le génome du tissu pathologique à celui obtenu à partir du sang périphérique provenant du même patient.Aucune différence d'expression du FGF10, du FGFR2b et de SHH n'était observée en immunohistochimie, entre MAKP et témoins. L'expression ARNm du FGF10 était cependant plus élevée dans les fibroblastes de MAKP que dans les fibroblastes de tissus témoins. Nous n'avons pas observé de dilatation des voies aériennes de conduction chez les fœtus ligaturés, mais une augmentation du nombre des alvéoles pulmonaires. La voie de signalisation FGF10 n'était pas surexprimée à J29 dans le poumon des fœtus ligaturés. Les premiers résultats de l'analyse CGH array ne montrent pas de différence entre le génome provenant de la lésion et le génome provenant du sang périphérique. L'analyse transcriptomique est en cours.Le FGF10 n'est pas surexprimée de façon permanente dans les MAKP, mais il est possible que sa surexpression soit transitoire, et que notre analyse ait été trop tardive. L'occlusion trachéale précoce n'affecte pas les voies aériennes de conduction, notre modèle animal n'est pas un modèle de MAKP. Un modèle fondé sur une occlusion bronchique précoce, sur des explants de poumon fœtal serait probablement plus adapté à l'étude des MAKP. L'absence d'anomalie génétique confirme l'hypothèse d'une anomalie localisée et transitoire du développement pulmonaire à l'origine des MAKP. / Les Malformations Adénomatoïdes Kystiques du Poumon (MAKP) sont les malformations pulmonaires congénitales les plus fréquentes. Leur diagnostic est anatomopathologique. Elles sont classées en type I si elles comportent de larges kystes (>2cm), en type II si elles contiennent de multiples kystes plus petits (<1cm). Les MAKP de type III ont un aspect plus solide et contiennent des structures immatures ressemblant au poumon en développement. En général asymptomatiques, les MAKP peuvent se compliquer in utero d'hydramnios ou d'anasarque, à la naissance de détresse respiratoire, et plus tardivement d'infections ou de pneumothorax. Leur potentielle dégénérescence maligne reste débattue. L'origine des MAKP est inconnue. Les avancées récentes suggèrent une anomalie transitoire et focale du développement pulmonaire, qui pourrait être secondaire à une obstruction des voies aériennes. Le rôle du Fibroblast Growth Factor 10 (FGF10), facteur indispensable à la formation des ramifications pulmonaires, est supporté par différents modèles animaux. La surexpression localisée du FGF10 pourrait induire des dilatations kystiques des voies aériennes.L'objectif de ce travail était de déterminer les anomalies moléculaires à l'origine des MAKP.Dans une approche molécule candidate, nous avons comparé par immunohistochimie l'expression du FGF10, de son récepteur le FGFR2b, et d'un de ses inhibiteurs, Sonic Hedgehog (SHH), entre MAKP et tissus témoins. Nous avons également comparé l'expression de l'ARNm du FGF10 dans des cultures de fibroblastes isolés à partir de MAKP et de tissus témoins. Nous avons enfin élaboré un modèle de ligature trachéale in-utéro de lapins fœtaux, afin de modéliser les MAKP et d'étudier in-vivo en fin de gestation (J29/31) les conséquences morphologiques et moléculaires d'une obstruction trachéale précoce (J23/31). Dans une approche sans à-priori, nous avons microdissequé des MAKP et des tissus témoins, afin de séparer les compartiments épithélial et mésenchymateux et de comparer les transcriptomes issus de ces 2 compartiments entre MAKP et tissus sains. Nous avons également recherché l'existence d'anomalies génétiques in-situ, en comparant par CGH array le génome du tissu pathologique à celui obtenu à partir du sang périphérique provenant du même patient.Aucune différence d'expression du FGF10, du FGFR2b et de SHH n'était observée en immunohistochimie, entre MAKP et témoins. L'expression ARNm du FGF10 était cependant plus élevée dans les fibroblastes de MAKP que dans les fibroblastes de tissus témoins. Nous n'avons pas observé de dilatation des voies aériennes de conduction chez les fœtus ligaturés, mais une augmentation du nombre des alvéoles pulmonaires. La voie de signalisation FGF10 n'était pas surexprimée à J29 dans le poumon des fœtus ligaturés. Les premiers résultats de l'analyse CGH array ne montrent pas de différence entre le génome provenant de la lésion et le génome provenant du sang périphérique. L'analyse transcriptomique est en cours.Il semble donc que la voie du FGF10 ne soit pas surexprimée dans les MAKP, mais il est possible que la surexpression de ce facteur soit transitoire, et que notre analyse ait été trop tardive. L'occlusion trachéale précoce n'affecte pas les voies aériennes de conduction, notre modèle animal n'est pas un modèle de MAKP. Un modèle fondé sur une occlusion bronchique précoce, sur des explants de poumon fœtal serait probablement plus adapté à l'étude des MAKP. L'absence d'anomalie génétique confirme l'hypothèse d'une anomalie localisée et transitoire du développement pulmonaire à l'origine des MAKP.

Page generated in 0.0583 seconds