• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 2
  • Tagged with
  • 52
  • 52
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adverse effects of early life dysbiosis on pulmonary and allergic asthma development

Wilburn, Adrienne 06 June 2023 (has links)
No description available.
12

Cell and developmental stage specific role of Dicer1 in the lung epithelium

Gardner, Margaret A., B.S. 16 June 2015 (has links)
No description available.
13

REGULATION OF LUNG EPITHELIAL DIFFERENTIATION ALVEOLARIZATION AND GENE EXPRESSION BY GATA-6 <i>IN VITRO</i> AND <i>IN VIVO</i>

LIU, CONG 16 September 2002 (has links)
No description available.
14

The Pulmonary Vasculature Mediates Differential Time-Sensitive Effects on Embryonic Lung Development

Mallory, Bradford Paul 14 July 2005 (has links)
No description available.
15

THE ROLE OF THE ETS TRANSCRIPTION FACTOR Elf5 IN LUNG DEVELOPMENT

METZGER, DAVID EDWARD January 2007 (has links)
No description available.
16

Organ development and tumorigenesis: a molecular link

Bonner, Allison E. 03 February 2004 (has links)
No description available.
17

Mesenchyme Induces Embryonic and Induced Pluripotent Stem Cells to a Distal Lung Epithelial Cell Phenotype

Fox, Emily 11 December 2012 (has links)
Derivation of lung epithelial cells from stem cells remains a challenging task, due in part to a lack of understanding of the molecular mediators driving commitment of endoderm to an early lung lineage. Reciprocal signalling between the lung mesenchyme and epithelium is crucial for proper differentiation and branching morphogenesis to occur. We hypothesized that the combination of signalling pathways comprising early epithelial-mesenchymal interactions and the 3-D spatial environment are required for induction of embryonic and induced pluripotent stem cells (ESC and iPSC, respectively) into a lung cell phenotype with the hallmarks of the distal niche. Aggregating early lung mesenchyme with endoderm-induced ESC and iPSC resulted in differentiation to an NKX2.1 and pro-SFTPC positive lineage. The differentiating cells organized into tubular structures and became polarized epithelial cells. Ultrastructure analysis revealed precursors of lamellar bodies, and Sftpb mRNA expression was detected. Quantification of the differentiation using an Nkx2.1-reporter ESC line revealed that 80% were committed to an early lung lineage, a vast improvement over what has previously been published. The FGF growth factor family comprises well-known mediators of growth and differentiation during the development of many organs, including the lung. We found that FGF2 signalling through the FGFR2iiic receptor isoform was mediating the commitment of the stem cells to an early lung epithelial phenotype, as defined by NKX2.1/proSFTPC expression. FGF7 signalling through the FGFR2iiib receptor was found to be important for the maturation and morphogenesis of the NKX2.1/proSFTPC positive lineage, but did not play a role in the initial commitment. The addition of FGF2 to endoderm-induced ESC or iPSC in the absence of mesenchyme was able to commit the cells to an NKX2.1-positive lineage, but no proSFTPC was detected. Furthermore,the cells did not become polarized and no longer organized into tubular structures. These findings suggest that while FGF2 is important for initial commitment, additional mesenchyme components including matrix proteins, supporting cell lineages and other growth factors are crucial for an efficient differentiation to an early lung epithelial cell lineage.
18

The role of the planar cell polarity pathway in branching morphogenesis

Yates, Laura Louise January 2011 (has links)
The development of organs such as the lung and kidney occurs by branching morphogenesis. Changes in the cytoskeletal architecture, cell-cell adhesion and cell polarity are necessary for the formation of new branches. Interactions and reciprocal signalling between epithelial and mesenchymal cells mediate these organised cell movements that give rise to a complex system of tubes suitable for the transport of gas or fluids. Mutations that disrupt formation of either the correct number, or shape of epithelial branches, affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signaling pathways that drive epithelial tube formation will likely shed light on both congenital and adult lung disease. This study shows that mutations in the planar cell polarity (PCP) genes: Celsr1; Vangl2 and Scribble, lead to disrupted lung development and defects in lung architecture. Examination of Vangl2 mutant kidneys reveals similar impairment of branching morphogenesis. Detailed histological and immunocytochemical analysis reveals that lungs from Celsr1Crsh/Crsh, Vangl2Lp/Lp and ScribbleCrc/Crc mice are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. Moreover, epithelial integrity is disrupted, cytoskeletal remodeling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. In ex-vivo culture, inhibition of Rho kinase, an important downstream effector of the PCP signaling pathway, can mimic the branching defects observed in these three mouse mutants. Furthermore, all three proteins are present in restricted spatial domains within lung epithelium. ScribbleCrc/Crc lungs, the most severely affected line, exhibit additional defects in components of the tight and adherens junctions; this in turn affects lumen diameter. These findings show that components of the PCP pathway: Celsr1; Vangl2 and Scribble are required for normal foetal lung development, thereby revealing a novel signalling pathway critical for this process. Examination of postnatal mice was not possible as homozygous mutations result in embryonic lethality. However, an assessment of Vangl2Lp/+ mice reveals that loss of a single copy of Vangl2 is enough to cause defects in embryonic lung development that persist into adult life, affecting lung function. Similarly, Vangl2Lp/+ mice show a small but significant reduction in kidney glomeruli.
19

Susceptibilité génétique à la dysplasie bronchopulmonaire du nouveau-né prématuré / Genetic susceptibility for bronchopulmonary dysplasia of the preterm infant

Hadchouel Duvergé, Alice 21 November 2011 (has links)
La dysplasie bronchopulmonaire (DBP) constitue la principale séquelle respiratoire de la prématurité. Elle est caractérisée par des altérations du développement alvéolaire et est définie cliniquement par la persistance d'une oxygénodépendance à 36 semaines d'âge corrigé. Malgré l'amélioration constante des soins en néonatologie, la DBP reste relativement fréquente chez les prématurés de moins de 1000g, et aucun traitement préventif ou curatif véritablement efficace n'existe à l'heure actuelle. Une susceptibilité génétique à la DBP a été démontrée il y quelques années. L'identification de gènes de susceptibilité permettrait non seulement de mieux comprendre la physiopathologie de cette maladie, mais également de dégager de nouvelles pistes thérapeutiques. Les études disponibles sont basées sur une approche gène candidat, le plus souvent sur un nombre limité de sujets, et aucune d'entre elles n'a pu être répliquée dans d'autres populations. Nous avons donc décidé de réaliser une étude d'association pan-génomique à la recherche de gènes de susceptiblité à la DBP.Cette étude multicentrique a permis la constitution prospective d'une base de données cliniques et biologiques et d'une banque d'ADN de nouveau-nés prématurés de moins de 28 SA. L'étape de screening pan-génomique a été réalisée par une stratégie de DNA pooling dans deux populations ethniques différentes, et la validation par génotypage individuel dans deux populations de réplication. Les gènes sélectionnés ont ensuite été étudiés au cours du développement pulmonaire chez le rat.L'ensemble de la démarche pan-génomique a permis d'identifier un gène majeur, commun à l'ensemble des populations étudiées: SPOCK2. Notre étude a également permis d'identifier MMP16 comme gène de susceptibilité à partir des premiers résultats du DNA pooling dans la population caucasienne. L'étude de ces deux gènes au cours du développement pulmonaire chez le rat nous oriente fortement vers un rôle au cours du développement alvéolaire, avec un pic d'expression au cours de l'alvéolisation et une altération de cette expression dans le modèle hyperoxie. De plus, SPOCK2 et MMP16 appartiennent à une voie de signalisation commune, ce point renforçant fortement la crédibilité du rôle de ces gènes dans la susceptibilité à la DBP. Le rôle exact de ces gènes dans l'alvéolisation et la DBP reste à déterminer ainsi que les conséquences fonctionnelles potentielles des polymorphismes identifiés. Parallèlement, la collecte de nouveaux échantillons d'ADN chez des anciens prématurés ainsi que la collaboration avec des équipes étrangères permettra de poursuivre les études d'association dans des populations de plus en plus importantes / RationaleBronchopulmonary dysplasia is the most common chronic respiratory disease in prematureinfants. Genetic factors might contribute to bronchopulmonary dysplasia susceptibility.ObjectivesTo identify genetic variants involved in bronchopulmonary dysplasia through a genome-wideassociation study.MethodsWe prospectively evaluated 418 premature neonates (gestational age below 28 weeks), ofwhom 22% developed bronchopulmonary dysplasia. Two discovery series were created, usinga DNA pooling strategy in neonates from Caucasian and African ancestry. Polymorphismsassociated with the disease were confirmed in an independent replication population. Geneswere then explored by fine mapping and associations were replicated in an external Finnishpopulation of 213 neonates. Validated genes expression patterns were studied in rat lung,following air or hyperoxia exposure.Measurements and Main ResultsSPOCK2 gene was identified by both discovery series. The most significant polymorphism(rs1245560, p=1.66x10-7) was confirmed by individual genotyping, and in the replicationpopulation (p=0.002). Fine mapping confirmed the association of rs1245560 withbronchopulmonary dysplasia in both Caucasian and African populations with adjusted oddsratios of 2.96 (95% CI [1.37-6.40]) and 4.87 [1.88-12.63] respectively. In Caucasian neonates,rs1049269 was also associated with the disease (OR=3.21 [1.51-6.82]). These associationswere replicated in the Finnish population. In newborn rat lungs, SPOCK2 mRNA levelsmarkedly increased during the alveolar stage of lung development. After rat exposure tohyperoxia, SPOCK2 expression increased relative to air-exposed controls
20

Investigating factors governing cell fate decisions in respiratory epithelium

Johnson, Jo-Anne January 2018 (has links)
The maintenance of the airway/respiratory epithelium during adult homeostasis and repair and its construction during embryonic development require tightly regulated cell fate decisions. This regulation takes the form of complex transcription factor and signalling cascades, much of which are unknown, particularly in human lung development. Multiciliogenesis describes the process of specification/differentiation of airway epithelial progenitors/stem cells into mature multiciliated cells (MCCs). Here, I have identified 2 novel transcription factors, Fank1 and Jazf1 which form part of the transcription factor cascade regulating multiciliogenesis in adult and embryonic mouse tracheas. Mouse tracheal epithelium is representative of epithelium lining the entire human airway and it is possible that we will also be able to extrapolate these findings to the human airway. It is not until we fully understand the regulation of multiciliogenesis that it will be possible to look at ways of pushing basal cells towards a MCC fate for purposes of cell replacement therapy, for example in patients with mucociliary disease. As well as exploring cell fate decisions in the mouse upper airway epithelium using embryonic tracheal explants and mouse tracheal epithelial cell (MTEC) cultures, I have also explored the regulation of cell fate decisions in distal human lung epithelium at the pseudoglandular stage of development. At this stage SOX9+ distal tip cells are self-renewing and multipotent and give rise to SOX2+ stalk descendents, which differentiate into airway epithelium. The regulation of SOX9+ lung tip cell multipotency and migration of SOX2+ stalk descendents during human lung development is poorly understood. I have compared human tip (SOX9+) versus stalk (SOX2+) transcriptomes using gene ontology (GO), which has highlighted some key signalling pathways enriched in tip cells which could be important in maintaining distal tip cell multipotency. These pathways have been utilised in optimising conditions for propagating self-renewing tip-derived organoids. These organoids have the potential to be differentiated into bronchiolar and alveolar fates and as such are an invaluable research tool for studying human lung epithelial development, whilst minimising the use of human embryos and its associated ethical implications. I have also performed human tip versus mouse tip transcriptome GO analysis which highlights that although there are many similarities, there are also differences between human and mouse lung epithelium development, emphasising the need for research on human tissue.

Page generated in 0.0714 seconds