Spelling suggestions: "subject:"M?quick dde vetores dde suporte"" "subject:"M?quick dde vetores dee suporte""
1 |
Proposta de implementa??o em FPGA de m?quina de vetores de suporte (SVM) utilizando otimiza??o sequencial m?nima (SMO)Noronha, Daniel Holanda 20 November 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-12-01T23:34:00Z
No. of bitstreams: 1
DanielHolandaNoronha_DISSERT.pdf: 2617561 bytes, checksum: 88cfc246d074eabfd971d5b81edbf109 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-12-05T21:07:17Z (GMT) No. of bitstreams: 1
DanielHolandaNoronha_DISSERT.pdf: 2617561 bytes, checksum: 88cfc246d074eabfd971d5b81edbf109 (MD5) / Made available in DSpace on 2017-12-05T21:07:18Z (GMT). No. of bitstreams: 1
DanielHolandaNoronha_DISSERT.pdf: 2617561 bytes, checksum: 88cfc246d074eabfd971d5b81edbf109 (MD5)
Previous issue date: 2017-11-20 / A import?ncia do uso de FPGAs como aceleradores vem crescendo fortemente nos ?ltimos
anos. Companhias como Amazon e Microsoft est?o incorporando FPGAs em seus data
centers, objetivando especialmente acelerar algoritmos em suas ferramentas de busca. No
centro dessas aplica??es est?o algoritmos de aprendizado de m?quina, como ? o caso da
M?quina de Vetor de Suporte (SVM). Entretanto, para que essas aplica??es obtenham
a acelera??o desejada, o uso eficiente dos recursos das FPGAs ? necess?rio. O projeto
possui como objetivo a implementa??o paralela em hardware tanto da fase feed-forward
de uma M?quina de Vetores de Suporte (SVM) quanto de sua fase de treinamento. A
fase feed-forward (infer?ncia) ? implementada utilizando o kernel polinomial e de maneira
totalmente paralela, visando obter a m?xima acelera??o poss?vel ao custo de uma maior
utiliza??o da ?rea dispon?vel. Al?m disso, a implementa??o proposta para a infer?ncia ?
capaz de computar tanto a classifica??o quanto a regress?o utilizando o mesmo hardware.
J? o treinamento ? feito utilizando Otimiza??o Sequencial M?nima (SMO), possibilitando
a resolu??o da complexa otimiza??o da SVM atrav?s de passos simples. A implementa??o
da SMO tamb?m ? feita de modo extremamente paralelo, fazendo uso de t?cnicas para
acelera??o como a cache do erro. Ademais, o Kernel Amig?vel ao Hardware (HFK) ?
utilizado para diminuir a ?rea utilizada pelo kernel, permitindo que um n?mero maior
de kernels seja implementado em um chip de mesmo tamanho, acelerando o treinamento.
Ap?s a implementa??o paralela em hardware, a SVM ? validada por simula??o e s?o feitas
an?lises associadas ao desempenho temporal da estrutura proposta, assim como an?lises
associadas ao uso de ?rea da FPGA. / The importance of Field-Programmable Gate Arrays as compute accelerators has dramatically
increased during the last couple of yers. Many companies such as Amazon, IBM and
Microsoft included FPGAs in their data centers aiming to accelerate their search engines.
In the center of those applications are many machine learning algorithms, such as Support
Vector Machines (SVMs). For FPGAs to thrive in this new role, the effective usage of
FPGA resources is required. The project?s main goal is the parallel FPGA implementation
of both the feed-forward phase of a Support Vector Machine as well as its training phase.
The feed-forward phase (inference) is implemented using the polynomial kernel in a highly
parallel way in order to obtain maximum throughput at the cost of some extra area.
Moreover, the inference implementation is capable of computing both classification and
regression using a single hardware. The training phase of the SVM is implemented using
Sequential Minimal Optimization (SMO), which enables the resolution of a complex convex
optimization problem using simple steps. The SMO implementation is also highly parallel
and uses some acceleration techniques, such as the error cache. Moreover, the Hardware
Friendly Kernel (HFK) is used in order to reduce the kernel?s area, enabling the increase in
the number of kernels per area. After the parallel implementation in hardware, the SVM is
validated by simulation. Finally, analysis associated with the temporal performance of the
proposed structure, as well as analysis associated with FPGA?s area usage are performed.
|
2 |
Sistema inteligente para o processamento de imagens digitais intrabucais oclusaisLins, Ramon Augusto Sousa 04 December 2015 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-07-22T15:28:33Z
No. of bitstreams: 1
RamonAugustoSousaLins_DISSERT.pdf: 3798892 bytes, checksum: 0a5d06ff47c763499839e741148b3dcb (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-07-27T22:14:28Z (GMT) No. of bitstreams: 1
RamonAugustoSousaLins_DISSERT.pdf: 3798892 bytes, checksum: 0a5d06ff47c763499839e741148b3dcb (MD5) / Made available in DSpace on 2016-07-27T22:14:28Z (GMT). No. of bitstreams: 1
RamonAugustoSousaLins_DISSERT.pdf: 3798892 bytes, checksum: 0a5d06ff47c763499839e741148b3dcb (MD5)
Previous issue date: 2015-12-04 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq) / Neste trabalho ? proposto o desenvolvimento de um sistema inteligente capaz de segmentar, contar e classificar individualmente dentes a partir de imagens fotogr?ficas digitais intraorais oclusais.O sistema proposto faz uso combinado das t?cnicas de aprendizagem de m?quina no caso a m?quina de vetor de suporte e processamento digital de imagens. Primeiramente ? feita uma segmenta??o baseada nas cores dos dentes e n?o dentes presentes na imagem atrav?s do uso de m?quina de vetores de suporte. A partir da identifica??o das regi?es de interesse, dentes e n?o dentes, os dados s?o representados de modo que a contagem, detec??o de fronteiras e classifica??o dos dentes possa ser feita. Para contagem e detec??o de fronteiras s?o utilizadas t?cnicas baseadas em operadores morfol?gicos, eros?o e transformada watershed, respectivamente. A classifica??o quanto aos tipos de dentes ? baseada na utiliza??o dos descritores de posi??o e forma, sendo esse ?ltimo definido por descritores de Fourier. O sistema portanto ? capaz de realizar a segmenta??o, a contagem e a classifica??o de dentes presentes nas imagens. / Several are the areas in which digital images are used in solving day-to-day problems.
In medicine the use of computer systems have improved the diagnosis and medical interpretations.
In dentistry it?s not different, increasingly procedures assisted by computers
have support dentists in their tasks. Set in this context, an area of dentistry known as public
oral health is responsible for diagnosis and oral health treatment of a population. To
this end, oral visual inspections are held in order to obtain oral health status information
of a given population. From this collection of information, also known as epidemiological
survey, the dentist can plan and evaluate taken actions for the different problems
identified. This procedure has limiting factors, such as a limited number of qualified professionals
to perform these tasks, different diagnoses interpretations among other factors.
Given this context came the ideia of using intelligent systems techniques in supporting
carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent
system able to segment, count and classify teeth from occlusal intraoral digital
photographic images. The proposed system makes combined use of machine learning
techniques and digital image processing. We first carried out a color-based segmentation
on regions of interest, teeth and non teeth, in the images through the use of Support
Vector Machine. After identifying these regions were used techniques based on morphological
operators such as erosion and transformed watershed for counting and detecting
the boundaries of the teeth, respectively. With the border detection of teeth was possible
to calculate the Fourier descriptors for their shape and the position descriptors. Then
the teeth were classified according to their types through the use of the SVM from the
method one-against-all used in multiclass problem. The multiclass classification problem
has been approached in two different ways. In the first approach we have considered three
class types: molar, premolar and non teeth, while the second approach were considered
five class types: molar, premolar, canine, incisor and non teeth. The system presented a
satisfactory performance in the segmenting, counting and classification of teeth present in
the images.
|
Page generated in 0.1111 seconds