Spelling suggestions: "subject:"máxima verossimilhança"" "subject:"máxima verossimilhanças""
1 |
Estimação pontual em regressão beta: aspectos computacionaisMonroy, Nataly Adriana Jimenez January 2007 (has links)
Made available in DSpace on 2014-06-12T18:03:48Z (GMT). No. of bitstreams: 2
arquivo7189_1.pdf: 1050765 bytes, checksum: e7a2d33f54d7aaed4a2234e32f3def21 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2007 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A classe de modelos de regressão beta é de grande utilidade em situações de modelagem onde o objetivo reside no estudo da relação entre uma variável de interesse que assume continuamente valores no intervalo (0, 1) e outras variáveis que afetam seu comportamento através de uma estrutura de regressão. A presente dissertação dedica-se a estudar aspectos computacionais inerentes à estimação pontual dos parâmetros do modelo de regressão beta proposto por Ferrari & Cribari-Neto (2004) através da avaliação de diferentes métodos de otimização não-linear que podem ser utilizados para maximizar numericamente a função de log-verossimilhança. Nós mostramos, através de simulações de Monte Carlo e de estimações com conjuntos de dados reais, que os métodos de otimização não-linear que usam informação relativa `a matriz hessiana, como é o caso dos métodos de Newton e BFGS, são os mais eficientes no que tange à maximização da função de log-verossimilhança do modelo de regressão beta. Isso ocorre devido à sua rapidez, precisão e robustez frente a perturbações comumente verificadas em situações práticas, tais como presença de pontos de alavanca e elevada correlação entre variáveis regressoras
|
Page generated in 0.0428 seconds