• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localisation et suivi d'activité fonctionnelle cérébrale en électro et magnétoencéphalographie: Méthodes et applications au système visuel humain

Gramfort, Alexandre 12 October 2009 (has links) (PDF)
Cette thèse est consacrée à l'étude des signaux mesurés par Electroencéphalographie (EEG) et Magnétoencéphalographie (MEG) afin d'améliorer notre compréhension du cerveau humain. La MEG et l'EEG sont des modalités d'imagerie cérébrale non invasives. Elles permettent de mesurer, hors de la tête, respectivement le potentiel électrique et le champ magnétique induits par l'activité neuronale. Le principal objectif lié à l'exploitation de ces données est la localisation dans l'espace et dans le temps des sources de courant ayant généré les mesures. Pour ce faire, il est nécessaire de résoudre un certain nombre de problèmes mathématiques et informatiques difficiles. La première partie de cette thèse part de la présentation des fondements biologiques à l'origine des données M/EEG, jusqu'à la résolution du problème direct. Le problème direct permet de prédire les mesures générées pour une configuration de sources de courant donnée. La résolution de ce problème à l'aide des équations de Maxwell dans l'approximation quasi-statique passe par la modélisation des générateurs de courants, ainsi que de la géométrie du milieu conducteur, dans notre cas la tête. Cette modélisation aboutit à un problème direct linéaire qui n'admet pas de solution analytique lorsque l'on considère des modèles de tête réalistes. Notre première contribution porte sur l'implémentation d'une résolution numérique à base d'éléments finis surfaciques dont nous montrons l'excellente précision comparativement aux autres implémentations disponibles. Une fois le problème direct calculé, l'étape suivante consiste à estimer les positions et les amplitudes des sources ayant généré les mesures. Il s'agit de résoudre le problème inverse. Pour ce faire, trois méthodes existent: les méthodes paramétriques, les méthodes dites de "scanning", et les méthodes distribuées. Cette dernière approche fournit un cadre rigoureux à la résolution de problème inverse tout en évitant de faire de trop importantes approximations dans la modélisation. Toutefois, elle impose de résoudre un problème fortement sous-contraint qui nécessite de fait d'imposer des a priori sur les solutions. Ainsi la deuxième partie de cette thèse est consacrée aux différents types d'a priori pouvant être utilisés dans le problème inverse. Leur présentation part des méthodes de résolution mathématiques jusqu'aux détails d'implémentation et à leur utilisation en pratique sur des tailles de problèmes réalistes. Un intérêt particulier est porté aux a priori induisant de la parcimonie et conduisant à l'optimisation de problèmes convexes non différentiables pour lesquels sont présentées des méthodes d'optimisation efficaces à base d'itérations proximales. La troisième partie porte sur l'utilisation des méthodes exposées précédemment afin d'estimer des cartes rétinotopiques dans le système visuel à l'aide de données MEG. La présentation porte à la fois sur les aspects expérimentaux liés au protocole d'acquisition jusqu'à la mise en oeuvre du problème inverse en exploitant des propriétés sur le spectre du signal mesuré. La contribution suivante ambitionne d'aller plus loin que la simple localisation d'activités par le problème inverse afin de donner accès à la dynamique de l'activité corticale. Partant des estimations de sources sur le maillage cortical, la méthode proposée utilise des méthodes d'optimisation combinatoires à base de coupes de graphes afin d'effectuer de façon robuste le suivi de l'activité au cours du temps. La dernière contribution de cette thèse porte sur l'estimation de paramètres sur des données M/EEG brutes non moyennées. Compte tenu du faible rapport signal à bruit, l'analyse de données M/EEG dites "simple essai" est un problème particulièrement difficile dont l'intérêt est fondamental afin d'aller plus loin que l'analyse de données moyennées en explorant la variabilité inter-essais. La méthode proposée utilise des outils récents à base de graphes. Elle garantit des optimisations globales et s'affranchit de problèmes classiques tels que l'initialisation des paramètres ou l'utilisation du signal moyenné dans l'estimation. L'ensemble des méthodes développées durant cette thèse ont été utilisées sur des données M/EEG réels afin de garantir leur pertinence dans le contexte expérimental parfois complexe des signaux réelles M/EEG. Les implémentations et les données nécessaires à la reproductibilité des résultats sont disponibles. Le projet de rétinotopie par l'exploitation de données de MEG a été mené en collaboration avec l'équipe du LENA au sein de l'hôpital de La Pitié-Salpêtrière (Paris).
2

Optimization and parallelization of the boundary element method for the wave equation in time domain / Optimisation et parallèlisation de la méthode des élements frontières pour l’équation des ondes dans le domaine temporel

Bramas, Bérenger 15 February 2016 (has links)
La méthode des éléments frontières pour l’équation des ondes (BEM) est utilisée en acoustique eten électromagnétisme pour simuler la propagation d’une onde avec une discrétisation en temps(TD). Elle permet d’obtenir un résultat pour plusieurs fréquences à partir d’une seule résolution.Dans cette thèse, nous nous intéressons à l’implémentation efficace d’un simulateur TD-BEM sousdifférents angles. Nous décrivons le contexte de notre étude et la formulation utilisée qui s’exprimesous la forme d’un système linéaire composé de plusieurs matrices d’interactions/convolutions.Ce système est naturellement calculé en utilisant l’opérateur matrice/vecteur creux (SpMV). Nousavons travaillé sur la limite du SpMV en étudiant la permutation des matrices et le comportementde notre implémentation aidé par la vectorisation sur CPU et avec une approche par bloc surGPU. Nous montrons que cet opérateur n’est pas approprié pour notre problème et nous proposonsde changer l’ordre de calcul afin d’obtenir une matrice avec une structure particulière.Cette nouvelle structure est appelée une matrice tranche et se calcule à l’aide d’un opérateur spécifique.Nous décrivons des implémentations optimisées sur architectures modernes du calculhaute-performance. Le simulateur résultant est parallélisé avec une approche hybride (mémoirespartagées/distribuées) sur des noeuds hétérogènes, et se base sur une nouvelle heuristique pouréquilibrer le travail entre les processeurs. Cette approche matricielle a une complexité quadratiquesi bien que nous avons étudié son accélération par la méthode des multipoles rapides (FMM). Nousavons tout d’abord travaillé sur la parallélisation de l’algorithme de la FMM en utilisant différentsparadigmes et nous montrons comment les moteurs d’exécution sont adaptés pour relâcher le potentielde la FMM. Enfin, nous présentons des résultats préliminaires d’un simulateur TD-BEMaccéléré par FMM . / The time-domain BEM for the wave equation in acoustics and electromagnetism is used to simulatethe propagation of a wave with a discretization in time. It allows to obtain several frequencydomainresults with one solve. In this thesis, we investigate the implementation of an efficientTD-BEM solver using different approaches. We describe the context of our study and the TD-BEMformulation expressed as a sparse linear system composed of multiple interaction/convolutionmatrices. This system is naturally computed using the sparse matrix-vector product (SpMV). Wework on the limits of the SpMV kernel by looking at the matrix reordering and the behavior of ourSpMV kernels using vectorization (SIMD) on CPUs and an advanced blocking-layout on NvidiaGPUs. We show that this operator is not appropriate for our problem, and we then propose toreorder the original computation to get a special matrix structure. This new structure is called aslice matrix and is computed with a custom matrix/vector product operator. We present an optimizedimplementation of this operator on CPUs and Nvidia GPUs for which we describe advancedblocking schemes. The resulting solver is parallelized with a hybrid strategy above heterogeneousnodes and relies on a new heuristic to balance the work among the processing units. Due tothe quadratic complexity of this matrix approach, we study the use of the fast multipole method(FMM) for our time-domain BEM solver. We investigate the parallelization of the general FMMalgorithm using several paradigms in both shared and distributed memory, and we explain howmodern runtime systems are well-suited to express the FMM computation. Finally, we investigatethe implementation and the parametrization of an FMM kernel specific to our TD-BEM, and weprovide preliminary results.

Page generated in 0.1158 seconds