• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-objective optimisation of a hydrogen supply chain / Optimisation multi-objectif de la conception de la chaîne logistique hydrogène

De León Almaraz, Sofia 14 February 2014 (has links)
L'hydrogène produit à partir de sources renouvelables et utilisé dans les piles à combustible pour diverses applications, tant mobiles que stationnaires, constitue un vecteur énergétique très prometteur, dans un contexte de développement durable. Les « feuilles de route » stratégiques, élaborées au niveau européen, national ou régional, consacrées aux potentialités énergétiques de l’hydrogène, ainsi que l’analyse des publications scientifiques ont cependant identifié le manque d'infrastructures, comme l'un des principaux obstacles au développement de l'économie « hydrogène ». Cette étude s’inscrit dans le cadre du développement d’une méthodologie de conception d'une chaîne logistique « hydrogène » (production, stockage et transport). La formulation, basée sur une procédure de programmation mathématique linéaire en variables mixtes, implique une approche multicritère concernant la minimisation du prix de revient de l’hydrogène, l’impact sur le réchauffement climatique et un indice de risque, en prenant en compte une échelle tant régionale que nationale. L’optimisation multi-objectif repose sur une stratégie Ɛ-contrainte développée à partir d’une méthode lexicographique menant à la construction de fronts de Pareto offrant un grand nombre de solutions. La procédure d’aide à la décision M-TOPSIS est ensuite utilisée pour choisir le meilleur compromis. Le modèle est appliqué à une étude de cas en Grande-Bretagne, issue de la littérature spécialisée, qui sert de référence pour comparer les approches mono- et multi-objectif. Ensuite, la modélisation et l'optimisation de la chaîne d'approvisionnement d'hydrogène pour la région Midi-Pyrénées ont été étudiées dans le cadre du projet «H2 vert carburant». Un problème mono/multi-période est traité selon des scénarios d'optimisation basés sur la stratégie Ɛ-contrainte développée à partir d’une méthode lexicographique. Le système d’information ArcGIS® est ensuite utilisé pour valider les solutions obtenues par optimisation multi-objectif. Cette technologie permet d'associer une période de temps aux configurations de la chaîne logistique hydrogène et d’analyser plus finement les résultats de la conception du réseau H2. L’extension au cas de la France répond à un double objectif : d'une part, tester la robustesse de la méthode à une échelle géographique différente et, d’autre part, examiner si les résultats obtenus au niveau régional sont cohérents avec ceux de l'échelle nationale. Dans cette étude de cas, l'outil spatial ArcGIS® est utilisé avant optimisation pour identifier les contraintes géographiques. Un scénario prenant en compte un cycle économique est également traité. Les optimisations mono et multi-objectif présentent des différences relatives au mode de déploiement de filière, centralisé ou décentralisé, et au type de technologie des unités production, ainsi qu’à leur taille. Les résultats confirment l'importance d'étudier différentes échelles spatiales. / Hydrogen produced from renewable sources and used in fuel cells both for mobile and stationary applications constitutes a very promising energy carrier in a context of sustainable development. Yet the strategic roadmaps that were currently published about the energy potentialities of hydrogen at European, national and regional level as well as the analysis of the scientific publications in this field have identified the lack of infrastructures as a major barrier to the development of a « hydrogen » economy. This study focuses on the development of a methodological framework for the design of a hydrogen supply chain (HSC) (production, storage and transportation). The formulation based on mixed integer linear programming involves a multi-criteria approach where three objectives have to be optimised simultaneously, i.e., cost, global warming potential and safety risk, either at national or regional scale. This problem is solved by implementing lexicographic and Ɛ-constraint methods. The solution consists of a Pareto front, corresponding to different design strategies in the associated variable space. Multiple choice decision making based on M-TOPSIS (Modified Technique for Order Preference by Similarity to Ideal Solution) analysis is then selected to find the best compromise. The mathematical model is applied to a case study reported in the literature survey and dedicated to Great Britain for validation purpose, comparing the results between mono- and multi-objective approaches. In the regional case, the modelling and optimisation of the HSC in the Midi-Pyrénées region was carried out in the framework of the project “H2 as a green fuel”. A mono/multi period problem is treated with different optimisation scenarios using Ɛ-constraint and lexicographic methods for the optimisation stage. The geographic information system (GIS) is introduced and allows organising, analysing and mapping spatial data. The optimisation of the HSC is then applied to the national case of France. The objective is twofold: on the one hand, to examine if the methodology is robust enough to tackle a different geographic scale and second to see if the regional approach is consistent with the national scale. In this case study, the ArcGIS® spatial tool is used before optimisation to identify the geographic items that are further used in the optimisation step. A scenario with an economic cycle is also considered. Mono- and multi-objective optimisations exhibit some differences concerning the degree of centralisation of the network and the selection of the production technology type and size. The obtained results confirm that different spatial and temporal scales are required to encompass the complexity of the problem.

Page generated in 0.0498 seconds