Spelling suggestions: "subject:"laméthode quantique"" "subject:"l’méthode quantique""
1 |
Approche théorique des collisions réactives de type ion-molécule / Theoretical collision type reactive ion-moleculeGannouni, Mohamed Achref 20 November 2014 (has links)
La collision entre l'ion hydroxyle (OH+) et l'atome d'hydrogène (H) joue un rôle majeur en physico-chimie de l'atmosphère et en astrophysique. Pour l'étude de ce système, nous avons générés la surface d'énergie potentielle tridimensionnelle (SEP-3D) globale doublet de la réaction H + OH+ --- H2O+ (X2B1)--- O + H2+. Les calculs électroniques ont été effectués au niveau MRCI avec la base aug-cc-pV5Z en incluant la correction des erreurs de superposition de base (BSSE). Cette SEP couvre la région moléculaire et les régions des longues portées pour les différents canaux : OH+ + H, O + H2+ et la réaction d'échange d'hydrogène. La qualité de la SEP a été validée après une comparaison des constantes spectroscopiques de H2O+ (X2B1) et des fragments diatomiques, des niveaux rovibroniques de H2O+ (X2B1), l'énergie de dissociation et de la barrière à linéarité pour H2O+ (X2B1) aux données expérimentales et théoriques existantes. Un bon accord est trouvé. Après avoir déterminé la SEP, nous avons utilisé les outils de la dynamique quantique indépendante du temps pour calculer les sections efficaces élastiques et inélastiques désexcitation de OH+ (v=0, j=1, 2, 3, 4, 5, 6 et 7) en collision avec l'atome d'hydrogène sur un large domaine d'énergie cinétique. Nous avons ainsi déterminé les taux désexcitation rotationnelle pour des températures allant de 10 à 200K. Nous avons également utilisé la surface quadruplet de Martinez et al. pour déduire ces taux désexcitation. Les résultats montrent que les sections efficaces inélastiques calculées sur la surface doublet sont en moyenne au moins deux à trois fois plus importantes que leurs correspondantes obtenues sur la surface quartet. Les potentiels à longue portée des deux surfaces étant identiques, ce résultat montre qu'un modèle basé sur la seule longue portée du potentiel ne pourrait pas rendre compte de la dynamique inélastique de ce système / The collision between the hydroxyl cation (OH+) and hydrogen atoms (H) plays a major role in physical chemistry of the atmosphere and astrophysics. To study this system, we generated the global three-dimensional potential energy surface (3D-PES) of the reaction H + OH+ ---- H2O+ (X2B1) ---- O + H2+. The electronic calculations were performed at the MRCI level with aug-cc-pV5Z basis including the basis set superposition error (BSSE) correction. This PES covers the molecular region and the long ranges close to the OH+ + H, O + H2+ and the hydrogen exchange channels. The quality of the PES is checked after comparison of the spectroscopic constants of H2O+ (X2B1) and of the diatomic fragments, the rovibronic levels, the dissociation energy, and the barrier to linearity of H2O+ (X2B1) to available experimental and theoretical data. A good agreement is found. Then, we used the tools of time-independent Quantum Dynamics to calculate the elastic and inelastic cross sections for the de-excitation of OH+ in collision with the hydrogen atom over a wide range of kinetic energy. We have thus determined the rotational de-excitation rate coefficients for temperatures ranging from 10 up to 200K. The results show that the inelastic cross sections on the doublet surface are on average at least two to three times larger than their cross section obtained on the previously computed cross sections using the quartet surface. Since, the long range parts of the doublet and the quartet PESs are identical, our work invalidates hence previous cross section determination. When only long range potentials are considered. Therefore, we recommend using fully the global 3D PES for scattering and reactive collision relevant for atmospheric and astrophysical studies
|
2 |
Modélisation des propriétés de transport des ions moléculaires de krypton et xénon pour l'optimisation des générateurs de plasma froids utilisant les gaz rares / Modeling the transport properties of molecular ions of krypton and xenon for the optimization of cold plasma generators using rare gasesVan de Steen, Cyril 11 December 2018 (has links)
L'utilisation de plasmas froids à base de gaz rares (Rg) dans des applications biomédicales ainsi que dans la propulsion spatiale est en nette évolution. Pour optimiser ces réacteurs plasmas, une compréhension fine des processus ayant lieu dans ces réacteurs est nécessaire. Ce travail de thèse a pour objectif de fournir les données manquantes dans la littérature (coefficients de transport et réaction) en passant par des données mésoscopiques (sections efficaces) obtenues à partir de données microscopiques (potentiels d'interaction) pour le xénon et krypton dans leur gaz parent. Seul des plasmas froids composés d'un seul type d'atome sont considérés. Comme le krypton et le xénon sont des gaz rares, et ont donc, à l'état de neutralité peu/pas d'interaction entre eux. Par conséquent, seules les collisions ion - atome seront considérées. Du fait des faibles énergies des ions dans le plasma froid, seul les 6 premiers états excités du couple Rg2+ seront pris en compte. Ces 6 états seront classés en deux groupes, 2P1/2 et 2P3/2. Lors de ce travail, deux potentiels d'interaction différents disponibles dans la littérature sont utilisés et comparés pour les systèmes collisionnels Kr+/Kr et Xe+/Xe dans le calcul des sections efficaces. Pour les collisions impliquant des dimères ioniques (Kr2+/Kr et Xe2+/Xe), les potentiels d'interaction sont calculés à partir du modèle DIM (Diatomics In Molecules) qui est une combinaison des potentiels atomiques d'interaction neutre - neutre et ion - neutre. Les sections efficaces, requises pour obtenir les données mésoscopiques manquantes, sont calculées à partir de trois méthodes différentes. La première méthode est la méthode quantique qui permet, par une résolution de l'équation de Schrödinger, d'obtenir de manière exacte les sections efficaces à partir des potentiels d'interaction. Cette méthode exacte, étant grande consommatrice de temps de calcul, est utilisée en tant que référence pour valider les deux autres méthodes approchées. La seconde méthode, nommée semi-classique, est basée sur la même expression que la section efficace quantique mais utilise un déphasage approché (approximation JWKB), induit par le potentiel d'interaction, entre l'onde diffusée et l'onde incidente. [...] / The use of cold plasmas based on rare gases (Rg) in biomedical applications as well as in space propulsion is clearly evolving. To optimize these plasma reactors, a fine understanding of the processes taking place in these reactors is necessary. This thesis aims to provide the missing data in the literature (transport coefficients and reaction rates) through mesoscopic data (cross-sections) obtained from microscopic data (interaction potentials) for xenon and krypton in their parent gas. Only cold plasmas composed of a single type of atom are considered. As krypton and xenon are rare gases, and so have, in the neutral state little / no interaction between them. Therefore, only ion - atom collisions will be considered. Due to the low ion energies in the cold plasma, only the first 6 excited states of the Rg2+ pair will be taken into account. These 6 states will be classified in two groups, 2P1/2 and 2P3/2. In this work, two different interaction potentials available in the literature are used and compared for the Kr+/Kr and Xe+/Xe collision systems in the calculation of cross-sections. For collisions involving ionic dimers (Kr2+/Kr and Xe2+/Xe), the interaction potentials are calculated from the DIM model (Diatomics In Molecules) which is a combination of the atomic potentials of neutral - neutral and ionic - neutral interactions. The cross-sections required to obtain the missing mesoscopic data are calculated from three different methods. The first method is the quantum method which allows, by a resolution of the Schrödinger equation, to obtain exactly the cross-sections from the interaction potentials. This exact method, which consumes a lot of computation time, is used as a reference to validate the two other approximate methods. The second method, called semi-classical, is based on the same expression as the quantum cross section but uses an approximate phase shift (JWKB approximation), induced by the interaction potential, between the scattered wave and the incident wave. [...]
|
Page generated in 0.0954 seconds