• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude par dynamique moléculaire de cristaux liquides smectiques présentant la phase inclinée SmC: étude d'isomères structuraux et corrélation avec l'expérience

Porzio, François January 2014 (has links)
Les cristaux liquides (CL) sont des matériaux qui associent les propriétés de fluidité et de biréfringence. Leurs propriétés correspondent donc à un subtil mélange entre celles des liquides et celles des solides cristallins. Ces matériaux sont à l’origine de technologies aujourd’hui très largement répandues : il est presque assuré que celui qui lit ces lignes ait au minimum un appareil basé sur les CL à portée de vue. C’est d’ailleurs sans compter le fait que les savons et de nombreuses cellules biologiques du corps humain contiennent des CL. Pourtant, il y a un peu plus de cent ans, il s’agissait encore d’un nouvel état de la matière. D’ailleurs, le terme CL est extrêmement général et il existe en réalité plusieurs dizaines d’états CL différents, caractérisés par des arrangements moléculaires plus ou moins ordonnés. Certains de ces arrangements sont organisés en couches : ce sont les phases smectiques. Une application récente des CL concerne l’optique non-linéaire (ONL), en particulier les effets de deuxième ordre qui permettent le doublage de fréquence. Les CL smectiques C (SmC) sont d’excellents candidats pour cette technologie, car leur structure, et donc leur réponse ONL, peut être ajustée. Des théories de la phase SmC existent. Bien qu’elles soient utiles pour partiellement légitimer l’utilisation de facteurs empiriques lors de la conception de molécules potentiellement CL, ces modèles sont imparfaits. La synthèse suivie de tests expérimentaux sont nécessaires pour s’assurer que la phase SmC est présente dans le polymorphisme expérimental. Les molécules utilisées dans cette thèse ont été conçues en utilisant de telles règles. Toutefois, seules certaines d’entre elles présentent effectivement la phase SmC. Cette part d’empirisme, qui se traduit par le fait qu’il est impossible d’affirmer hors de tout doute, qu’une nouvelle molécule exhibera la phase SmC, est la preuve que celle-ci est incomprise. Puisqu’il limiterait le recours à une procédure par essai-erreur, un outil prédictif serait un atout majeur tant sur le plan fondamental, que sur les plans économique et du développement durable. Pour atteindre cet objectif, des modèles plus précis que les théories actuelles sont donc nécessaires. En fait, un changement subtil dans la structure d'une molécule CL peut avoir un impact majeur sur son polymorphisme CL expérimental. Par exemple, il arrive qu’une seule molécule parmi deux isomères structuraux, présente cette phase. En général, des modèles de simulation où les atomes sont regroupés à l’intérieur de billes statistiques, sont utilisés. De tels modèles sont en effet plus efficaces pour étudier les phénomènes à longue portée mis en jeu dans les arrangements CL. Toutefois, parce que les détails atomistiques ont un si grand impact, la simulation atomistique est, par définition, plus appropriée pour étudier la relation structure-propriété. Les modèles atomistiques sont toutefois contraints d’utiliser un nombre plus restreint de molécules et des temps de simulation plus courts. Une approche adaptée doit dans ce cas être utilisée. L’objet de cette thèse est de montrer que la simulation atomistique par dynamique moléculaire (DM) est un outil capable de saisir les subtilités qui régissent la formation éventuelle de la phase SmC. Un modèle de simulation par DM, où chaque atome est représenté par une particule distincte, est utilisé pour étudier des familles de molécules calamitiques, dont certains membres présentent la phase SmC. La DM utilise un ensemble d’équations et de paramètres, appelé champ de forces, pour gérer les interactions entre les particules. À l'intérieur des familles étudiées, certaines molécules sont des isomères structuraux qui utilisent strictement les mêmes paramètres de champ de forces. Pour de telles molécules, il est possible de directement lier le comportement obtenu par simulation au changement structural qui induit la modification du polymorphisme expérimental. La réorganisation des systèmes simulés, initialement SmC, est analysée avec l’augmentation de la température. Cette modification de l'auto-assemblage est capturée par les valeurs des énergies non-liantes : les interactions de van der Waals (vdW) et coulombienne. Le lien entre la signature énergétique et le polymorphisme CL expérimental a tout d’abord été étudié, grâce à l'utilisation combinée de la DM et de l’expérience. Il conduit à la proposition d’un modèle qualitatif expliquant l’origine de la stabilité thermique de la phase SmC. Ce modèle s’appuie sur les valeurs de l’énergie d’interaction coulombienne et les traduit en terme de distances entre les couches smectiques et entre les molécules d’une même couche. L’étude des huit molécules montre qu’une énergie d’interaction coulombienne à longue portée, c’est-à-dire entre les couches smectiques, plus négative, est concomitante avec une stabilité thermique accrue de la phase SmC. Cependant, cette stabilité thermique peut être réduite en fonction de l’interaction coulombienne à courte portée, c’est-à-dire entre les molécules dans une même couche. Une interaction trop forte conduit préférentiellement à la présence du cristal au détriment de la mésophase. Dans un second temps, une approche par DM améliorée a été utilisée. Elle consiste à appliquer le critère d’équilibre mécanique aux cellules de simulation initiales afin d’améliorer la qualité du point de départ des DM. Avec un tel modèle, la géométrie des arrangements simulés a pu être précisément analysée. Dans les courbes de l’énergie simulée, des transitions nettes apparaissent en fonction de la température. À basse température, chaque potentiel non-liant laisse apparaître des températures de transition qui lui sont propres. En revanche, la plus haute température de transition est identique pour toutes ces interactions. Analyser la géométrie des systèmes simulés révèle que cette transition à haute température correspond en fait à la transition vers le liquide isotrope. Avec ce nouveau modèle, l’arrangement initial SmC est conservé aux basses températures. Cette étude met également en valeur la synergie entre l’organisation SmC et le potentiel d’interaction de vdW à longue portée, qui est une fonction du volume du système. L’approche défendue dans cette thèse, qui favorise la finesse de la description de la matière plutôt que la représentation de vastes échelles de temps et d’espace, permet de dévoiler le lien profond entre la structure atomique, l'existence même et le comportement de la phase SmC.
2

Tuning of the interaction potential in complex plasmas

Wörner, Lisa 07 December 2012 (has links) (PDF)
Plasmas are next to the solid, liquid and gaseous phase the fourth state of matter. It is established by ionizing a gas. About 99% of the visible matter in the universe is in the state of plasma. The industrial, medical and scientific benefits of plasmas led to a variety of artificially produced plasmas. In plasmas dust particles can grow. Especially in industrial plasmas particle formation in the plasma gas phase is very common. The fundamental understanding of the growth is of vital importance in order to suppress undesired particle formation or to deposit particles and films in a certain region. In terms of this thesis the particle growth in a direct current (DC) discharge by using acetylene will be discussed. It has been observed that the particle growth depends on the neutral gas flow fed into the plasma chamber. Depending on the applied flow different growth frequencies and transport phenomena are shown. The observations recorded by a spectrometer will then be complimented by pictures from the particles taken by a scanning electron microscope. Introducing artificial particles into a plasma rather than growing them there yields several advantages. The particle sizes can be controlled, including the possibility of particle mixtures. Furthermore, particles with bigger diameter can be introduced than what can be grown on reasonable time scales in a plasma. Several possible experiments with injected particles underline the interdisciplinary character of the plasma environment. To understand the inter particle interactions the particle charge is a crucial parameter. In this thesis several experiments determining the particle charge will be discussed. In this frame the experiments on board of the International Space Station have been performed to measure the residual charge in the particle afterglow. In the last section experiments on particle cluster rotation as observed in an additional confinement will be discussed. It will be shown that the particles tend to form vertical strings due to the wake field that forms downstream of each particle. Finally the insight gained on the possibilities of tuning of the interaction potential by electric fields will be discussed. The results are then compared to the predictions of earlier simulations.
3

Etude multi-échelle des phénomènes physico-chimiques aux interfaces gaz – surfaces métalliques / Multiscale study of the chemical and physical phenomena’s at the gas – metal surface interfaces.

Grenier, Romain 26 October 2015 (has links)
Dans le contexte des écoulements micro- et nano-fluidiques, ce travail porte sur l'étude des interactions à l'interface entre des flux de gaz rares et des surfaces métalliques via une approche de modélisation multi-physique et multi-échelle. Elle se concentre tout particulièrement sur l'interaction entre l'argon et une surface d'or. Pour ce faire la modélisation a été effectuée en deux étapes, une première partie utilisant la mécanique quantique à l'échelle atomique et une deuxième partie de dynamique moléculaire à l'échelle nanométrique. La première partie est consacrée à l'obtention de potentiels d'interaction entre un atome d'argon et les atomes d'or de la surface par des méthodes de calculs théoriques basés sur la DFT comportant des effets à longues distances. Deux approches, donnant des résultats comparables, ont été utilisées : la première est liée à la description périodique de la surface d'or par un modèle basé sur la description des électrons par des ondes planes alors que la seconde permet de récupérer séparément les parties répulsives et attractives de l'interaction d'un atome d'argon avec un petit cluster d'or. Ces potentiels d'interactions ont été décomposés en potentiels de paires Ar-Au utilisables par des simulations de dynamique moléculaire. Ces simulations ont consisté en la projection d'atomes d'argon sur des surfaces d'or ‘parfaites' dites lisses ou des surfaces rugueuses plus représentatives de la technologie actuelle. L'analyse statistique des vitesses réfléchies permet de déterminer le coefficient d'accommodation tangentiel de l'argon sur des surfaces d'or. Ce coefficient est la traduction du phénomène de glissement qui peut ainsi être modélisé dans une description plus macroscopique de l'écoulement d'un gaz dans une micro-conduite. L'approche multi-physique utilisée dans ce travail a permis la détermination numérique de coefficients d'accommodations tangentiels très précis et comparables à l'expérience pour le couple argon-or, et doit pouvoir être appliquée à d'autres couples / In the context of micro- and nano-flows, this work concentrates on the study of interactions at the interface of noble gas and metal surfaces by a multi-physics and multiscale model. Particularly, the interaction of an argon atom with a gold surface is the focus of the study. The work has been made in two steps: the first one occurred at the atomic scale in which Quantum Mechanics is employed and the second one at the nanoscale with the use of Molecular Dynamics.The first part of the work was devoted to the determination of interaction potentials between an argon atom and gold atoms from the surface by DFT calculation methods comporting long range effects. Two approaches, leading similar results, have been used: the first one is linked to a periodic description of the gold surface where electrons are defined by plane waves, the second one gives independently repulsive and attractive parts of the interaction of an argon atom with a small gold cluster. Those interaction potentials are then decomposed in pair potentials suitable for Molecular Dynamics simulations. These last ones consisted in multiple times projecting argon atoms on smooth or rough gold surfaces (which are more representative of the roughness of actual technologies). The statistical analysis of the reflected velocities yielded the tangential momentum accommodation (TMAC) coefficient of argon on gold surfaces. This coefficient is the transcription of slip phenomena which occur at the interface, and it can then be used in nano-flow simulations. The multi-physics approach of the thesis gives accurate TMAC values which are comparable to experiments. The accounted method could then be applied to other noble gas metal surface couples
4

Modèle de contact pneumatique/chaussée pour la prévision du bruit de roulement

Sameur, Abdelaziz 12 1900 (has links) (PDF)
Ces vingt dernières années les constructeurs d'automobiles ont réduit progressivement le bruit émis par les véhicules par une action portant sur les sources d'origine mécanique (réduction du bruit du moteur, meilleure conception des transmissions, amélioration des silencieux...). Il s'avère maintenant que le bruit de contact pneumatique/chaussée est la source principale des nuisances sonores à plus de 50 Km/h. La génération du bruit de contact a comme sources de nombreux phénomènes impliquant des mécanismes compliqués. L'un des principaux phénomènes étant les vibrations du pneumatique dues à la rugosité de la chaussée. Pour modéliser les vibrations du pneumatique, il faut connaître d'une part le comportement vibratoire du pneumatique et d'autre part les forces de contact. Le problème de contact entre un pneumatique et une chaussée est un contact dynamique tridimensionnel qui est difficile à modéliser dans toute sa généralité. Les modèles de contact avec la chaussée utilisés font appel à une modélisation simple en 2D et les modèles de contact existant en 3D sont trop lourds pour le calcul. Dans ce mémoire on apporte une contribution à l'étude des forces de contact engendrées par l'influence de la rugosité de la chaussée et ceci afin d'avoir une bonne approximation des sources de vibrations du pneumatique et prédire le bruit de roulement. On a développé un modèle semi analytique 3D qu'on a validé expérimentalement pour un contact ponctuel élastique et viscoélastique avec différentes formes de pointes de contact. La validation expérimentale et numérique du modèle pour un contact multipoints élastique a été abordée. On a terminé par une application de la méthode pour résoudre un problème de contact sur des profils de chaussées modèles.
5

Etude multi-échelle des phénomènes physico-chimiques aux interfaces gaz – surfaces métalliques / Multiscale study of the chemical and physical phenomena’s at the gas – metal surface interfaces.

Grenier, Romain 26 October 2015 (has links)
Dans le contexte des écoulements micro- et nano-fluidiques, ce travail porte sur l'étude des interactions à l'interface entre des flux de gaz rares et des surfaces métalliques via une approche de modélisation multi-physique et multi-échelle. Elle se concentre tout particulièrement sur l'interaction entre l'argon et une surface d'or. Pour ce faire la modélisation a été effectuée en deux étapes, une première partie utilisant la mécanique quantique à l'échelle atomique et une deuxième partie de dynamique moléculaire à l'échelle nanométrique. La première partie est consacrée à l'obtention de potentiels d'interaction entre un atome d'argon et les atomes d'or de la surface par des méthodes de calculs théoriques basés sur la DFT comportant des effets à longues distances. Deux approches, donnant des résultats comparables, ont été utilisées : la première est liée à la description périodique de la surface d'or par un modèle basé sur la description des électrons par des ondes planes alors que la seconde permet de récupérer séparément les parties répulsives et attractives de l'interaction d'un atome d'argon avec un petit cluster d'or. Ces potentiels d'interactions ont été décomposés en potentiels de paires Ar-Au utilisables par des simulations de dynamique moléculaire. Ces simulations ont consisté en la projection d'atomes d'argon sur des surfaces d'or ‘parfaites' dites lisses ou des surfaces rugueuses plus représentatives de la technologie actuelle. L'analyse statistique des vitesses réfléchies permet de déterminer le coefficient d'accommodation tangentiel de l'argon sur des surfaces d'or. Ce coefficient est la traduction du phénomène de glissement qui peut ainsi être modélisé dans une description plus macroscopique de l'écoulement d'un gaz dans une micro-conduite. L'approche multi-physique utilisée dans ce travail a permis la détermination numérique de coefficients d'accommodations tangentiels très précis et comparables à l'expérience pour le couple argon-or, et doit pouvoir être appliquée à d'autres couples / In the context of micro- and nano-flows, this work concentrates on the study of interactions at the interface of noble gas and metal surfaces by a multi-physics and multiscale model. Particularly, the interaction of an argon atom with a gold surface is the focus of the study. The work has been made in two steps: the first one occurred at the atomic scale in which Quantum Mechanics is employed and the second one at the nanoscale with the use of Molecular Dynamics.The first part of the work was devoted to the determination of interaction potentials between an argon atom and gold atoms from the surface by DFT calculation methods comporting long range effects. Two approaches, leading similar results, have been used: the first one is linked to a periodic description of the gold surface where electrons are defined by plane waves, the second one gives independently repulsive and attractive parts of the interaction of an argon atom with a small gold cluster. Those interaction potentials are then decomposed in pair potentials suitable for Molecular Dynamics simulations. These last ones consisted in multiple times projecting argon atoms on smooth or rough gold surfaces (which are more representative of the roughness of actual technologies). The statistical analysis of the reflected velocities yielded the tangential momentum accommodation (TMAC) coefficient of argon on gold surfaces. This coefficient is the transcription of slip phenomena which occur at the interface, and it can then be used in nano-flow simulations. The multi-physics approach of the thesis gives accurate TMAC values which are comparable to experiments. The accounted method could then be applied to other noble gas metal surface couples
6

Solid-liquid interaction in ionanofluids. Experiments and molecular simulation / Interactions solide-liquide dans les ionanofluides. Expériences et simulation moléculaire

França, João 21 December 2017 (has links)
L'un des principaux domaines de recherche en chimie et en ingénierie chimique implique l'utilisation de liquides ioniques et de nanomatériaux comme alternatives à de nombreux produits chimiques et processus chimiques, comme ce dernier étant actuellement considérés comme non respectueux de l'environnement. Leur utilisation potentiel comme nouveaux fluides de transfert de chaleur et matériaux de stockage de chaleur, qui peuvent obéir à la plupart des principes de la chimie verte, nécessite l'étude expérimentale et théorique des mécanismes de transfert de chaleur dans les fluides complexes comme les ionanofluides. Le but de cette thèse était d'étudier les ionanofluides, qui consistent en la dispersion de nanomatériaux dans un liquide ionique.Le premier objectif de ce travail était de mesurer les propriétés thermophysiques des liquides ioniques et ionanofluides, à savoir la conductivité thermique, la viscosité, la densité et la capacité thermique dans une gamme de température comprise entre -10 et 150 ºC et à pression atmosphérique. Dans ce sens, les propriétés thermophysiques d'un ensemble considérable de liquides ioniques et d'ionanofluides ont été mesurées, avec un accent particulier sur la conductivité thermique des fluides. Les liquides ioniques étudiés étaient [C2mim][EtSO4], [C4mim][(CF3SO2)2N], [C2mim][N(CN)2], [C4mim][N(CN)2], [C4mpyr][N(CN)2], [C2mim][SCN], [C4mim][SCN], [C2mim][C(CN)3], [C4mim][C(CN)3], [P66614][N(CN)2], [P66614][Br] et leurs suspensions avec 0.5% et 1% w/w de nanotubes de carbone multi-parois (MWCNTs - de l'anglais multi-walled carbon nanotubes). Les résultats obtenus montrent qu'il y a une augmentation substantielle de la conductivité thermique du fluide de base due à la suspension du nanomatériau, en considérant les deux fractions massiques. Cependant, l'amélioration varie de manière significative lorsqu'on considère différents liquides ioniques de base, avec une gamme comprise entre 2 et 30%, avec une température croissante. Ce fait rend plus difficile l'unification des informations obtenues afin d'obtenir un modèle permettant de prédire l'amélioration de la conductivité thermique. Les modèles actuellement utilisé pour calculer la conductivité thermique des nanofluides présentent des valeurs considérablement sous-estimées par rapport aux valeurs expérimentales, en partie à cause des considérations sur le rôle de l'interface solide-liquide sur le transport de la chaleur.En ce qui concerne la densité, l'impact de l'ajout de MWCNTs sur la densité du fluide de base est très faible, variant entre 0.25% et 0.5% pour 0.5% w/w et 1% w/w MWCNTs, respectivement. Cela était assez attendu et est dû à la différence considérable de densité entre les deux types de matériaux. Cependant, la viscosité était la propriété pour laquelle les valeurs les plus élevées d' augmentation ont été vérifiées, allant de 28 à 245% pour les deux fractions massiques de MWCNT. La capacité calorifique était la seule des quatre propriétés mentionnées ci-dessus à ne pas être étudiée dans ce travail en raison de problèmes techniques avec le calorimètre à utiliser. Néanmoins, la quantité de données recueillies sur les propriétés thermophysiques restantes était extensif. On pense que ce dernier contribue de manière significative à une base de données croissante des propriétés des liquides ioniques et des ionanofluides, tandis que en fournissant un aperçu de la variation des propriétés obtenues à partir de la suspension de MWCNTs dans des liquides ioniques.(...) / One of the main areas of research in chemistry and chemical engineering involves the use of ionic liquids and nanomaterials as alternatives to many chemical products and chemical processes, as the latter are currently considered to be environmentally non-friendly. Their possible use as new heat transfer fluids and heat storage materials, which can obey to most principles of green chemistry or green processing, requires the experimental and theoretical study of the heat transfer mechanisms in complex fluids, like the ionanofluids.
It was the purpose of this dissertation to study ionanofluids, which consist on the dispersion of nanomaterials in an ionic liquid.The first objective of this work was to measure thermophysical properties of ionic liquids and ionanofluids, namely thermal conductivity, viscosity, density and heat capacity in a temperature range between -10 e 150 ºC 
and at atmospherical pressure. In this sense, the thermophysical properties of a considerable set of ionic liquids and ionanofluids were measured, with particular emphasis on the thermal conductivity of the fluids. The ionic liquids studied were [C2mim][EtSO4], [C4mim][(CF3SO2)2N], [C2mim][N(CN)2], [C4mim][N(CN)2], [C4mpyr][N(CN)2], [C2mim][SCN], [C4mim][SCN], [C2mim][C(CN)3], [C4mim][C(CN)3], [P66614][N(CN)2], [P66614][Br] and their suspensions with 0.5% and 1% w/w of multi-walled carbon nanotubes (MWCNTs). The results obtained show that there is a substantial enhancement of the thermal conductivity of the base fluid due to the suspension of the nanomaterial, considering both mass fractions. However, the enhancement varies significantly when considering different base ionic liquids, with a range between 2 to 30%, with increasing temperature. This fact makes it more difficult to unify the obtained information in order to obtain a model that allows predicting the enhancement of the thermal conductivity. Current models used to calculate the thermal conductivity of nanofluids present values that are considerably underestimated when compared to the experimental ones, somewhat due to the considerations on the role of the solid-liquid interface on heat transport.Considering density, the impact from the addition of MWCNTs on the base fluid’s density is very low, ranging between 0.25% and 0.5% for 0.5% w/w and 1% w/w MWCNTs, respectively. This was fairly expected and is due to the considerable difference in density between both types of materials. However, viscosity was the property for which the highest values of enhancement were verified, ranging between 28 and 245% in both mass fractions of MWCNTs. The heat capacity was the only of the four properties mentioned above not to be studied in this work due to technical issues with the calorimeter to be used. Nevertheless, the amount of data collected on the remainder thermophysical properties was extensive. It is believed that the latter contributes meaningfully to a growing database of ionic liquids and ionanofluids’ properties, while providing insight on the variation of said properties obtained from the suspension of MWCNTs in ionic liquids.The second objective of this work consisted on the development of molecular interaction models between ionic liquids and highly conductive nanomaterials, such as carbon nanotubes and graphene sheets. These models were constructed based on quantum calculations of the interaction energy between the ions and a cluster, providing interaction potentials. Once these models were obtained, a second stage on this computational approach entailed to simulate, by Molecular Dynamics methods, the interface nanomaterial/ionic liquid, in order to understand the specific interparticle/molecular interactions and their contribution to the heat transfer. This would allow to study both structural properties, such as the ordering of the ionic fluid at the interface, and dynamic ones, such as residence times and diffusion. (...)
7

Modélisation des propriétés de transport des ions moléculaires de krypton et xénon pour l'optimisation des générateurs de plasma froids utilisant les gaz rares / Modeling the transport properties of molecular ions of krypton and xenon for the optimization of cold plasma generators using rare gases

Van de Steen, Cyril 11 December 2018 (has links)
L'utilisation de plasmas froids à base de gaz rares (Rg) dans des applications biomédicales ainsi que dans la propulsion spatiale est en nette évolution. Pour optimiser ces réacteurs plasmas, une compréhension fine des processus ayant lieu dans ces réacteurs est nécessaire. Ce travail de thèse a pour objectif de fournir les données manquantes dans la littérature (coefficients de transport et réaction) en passant par des données mésoscopiques (sections efficaces) obtenues à partir de données microscopiques (potentiels d'interaction) pour le xénon et krypton dans leur gaz parent. Seul des plasmas froids composés d'un seul type d'atome sont considérés. Comme le krypton et le xénon sont des gaz rares, et ont donc, à l'état de neutralité peu/pas d'interaction entre eux. Par conséquent, seules les collisions ion - atome seront considérées. Du fait des faibles énergies des ions dans le plasma froid, seul les 6 premiers états excités du couple Rg2+ seront pris en compte. Ces 6 états seront classés en deux groupes, 2P1/2 et 2P3/2. Lors de ce travail, deux potentiels d'interaction différents disponibles dans la littérature sont utilisés et comparés pour les systèmes collisionnels Kr+/Kr et Xe+/Xe dans le calcul des sections efficaces. Pour les collisions impliquant des dimères ioniques (Kr2+/Kr et Xe2+/Xe), les potentiels d'interaction sont calculés à partir du modèle DIM (Diatomics In Molecules) qui est une combinaison des potentiels atomiques d'interaction neutre - neutre et ion - neutre. Les sections efficaces, requises pour obtenir les données mésoscopiques manquantes, sont calculées à partir de trois méthodes différentes. La première méthode est la méthode quantique qui permet, par une résolution de l'équation de Schrödinger, d'obtenir de manière exacte les sections efficaces à partir des potentiels d'interaction. Cette méthode exacte, étant grande consommatrice de temps de calcul, est utilisée en tant que référence pour valider les deux autres méthodes approchées. La seconde méthode, nommée semi-classique, est basée sur la même expression que la section efficace quantique mais utilise un déphasage approché (approximation JWKB), induit par le potentiel d'interaction, entre l'onde diffusée et l'onde incidente. [...] / The use of cold plasmas based on rare gases (Rg) in biomedical applications as well as in space propulsion is clearly evolving. To optimize these plasma reactors, a fine understanding of the processes taking place in these reactors is necessary. This thesis aims to provide the missing data in the literature (transport coefficients and reaction rates) through mesoscopic data (cross-sections) obtained from microscopic data (interaction potentials) for xenon and krypton in their parent gas. Only cold plasmas composed of a single type of atom are considered. As krypton and xenon are rare gases, and so have, in the neutral state little / no interaction between them. Therefore, only ion - atom collisions will be considered. Due to the low ion energies in the cold plasma, only the first 6 excited states of the Rg2+ pair will be taken into account. These 6 states will be classified in two groups, 2P1/2 and 2P3/2. In this work, two different interaction potentials available in the literature are used and compared for the Kr+/Kr and Xe+/Xe collision systems in the calculation of cross-sections. For collisions involving ionic dimers (Kr2+/Kr and Xe2+/Xe), the interaction potentials are calculated from the DIM model (Diatomics In Molecules) which is a combination of the atomic potentials of neutral - neutral and ionic - neutral interactions. The cross-sections required to obtain the missing mesoscopic data are calculated from three different methods. The first method is the quantum method which allows, by a resolution of the Schrödinger equation, to obtain exactly the cross-sections from the interaction potentials. This exact method, which consumes a lot of computation time, is used as a reference to validate the two other approximate methods. The second method, called semi-classical, is based on the same expression as the quantum cross section but uses an approximate phase shift (JWKB approximation), induced by the interaction potential, between the scattered wave and the incident wave. [...]

Page generated in 0.1679 seconds