• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes de propagation d'interfaces / Front propagation methods

Le Guilcher, Arnaud 16 June 2014 (has links)
Ce travail porte sur la résolution de problèmes faisant intervenir des mouvements d'interfaces. Dans les différentes parties de cette thèse, on cherche à déterminer ces mouvements d'interfaces en résolvant des modèles approchés consistant en des équations ou des systèmes d'équations sur des champs. Les problèmes obtenus sont des équations paraboliques et des systèmes hyperboliques. Dans la première partie (chapitre 2), on étudie un modèle simplifié pour la propagation d'une onde de souffle en dynamique des fluides compressibles. Ce modèle peut s'écrire sous la forme d'un système hyperbolique, et on construit un algorithme résolvant numériquement ce système par une méthode de type Fast-Marching. On mène également une étude théorique de ce système pour déterminer des solutions de référence et tester la validité de l'algorithme. Dans la deuxième partie (chapitres 3 à 5), les équations approchées sont de type parabolique, et on cherche à montrer l'existence de solutions de type régime permanent à ces équations. Dans les chapitres 3 et 4, on étudie une équation générique en une dimension associée à des phénomènes de réaction-diffusion. Dans le chapitre 3, on montre l'existence de solutions quasi-planes pour un terme de réaction (terme non-linéaire) assez général, et dans le chapitre 4 on utilise ces résultats pour montrer l'existence d'ondes pulsatoires progressives dans le cas spécifique d'une non-linéarité bistable. Le modèle étudié dans le chapitre 5 est un modèle de champ de phase approchant un modèle de dynamique des dislocations dans un cristal, dans un domaine correspondant physiquement à une source de Frank-Read / This work is about the resolution of problems associated with the motion of interfaces. In each part of this thesis, the goal is to determine the motion of interfaces by the use of approached models consisting of equations or systems of equation on fields. The problems we get are parabolic equations and hyperbolic systems. In the first part (Chapter 2), we study a simplified model for the propagation of a shock wave in compressible fluid dynamics. This model can be written as a hyperbolic system, and we construct an algorithm to solve it numerically by a Fast-Marching like method. We also conduct a theoretical study of this system to determine reference solutions and test the algorithm. In the second part (Chapters 3 to 5), the approached models yield parabolic equations, and our goal is to show the existence of permanent regime solutions for these equations. Chapter 3 and 4 are dedicated to the study of a generic one-dimensional equation modelling reaction-diffusion phenomena. In Chapter 3, we show the existence of plane-like solutions for a general reaction term, and in Chapter 4 we use this result to show the existence of pulsating travelling waves in the specific case of a bistable nonlinearity. In Chapter 5, we study a phase-field model approaching a model for the dynamics of dislocations in a crystal, in a domain corresponding to a Frank-Read source
2

Numerical methods for optimal control problems with biological applications / Méthodes numériques des problèmes de contrôle optimal avec des applications en biologie

Fabrini, Giulia 26 April 2017 (has links)
Cette thèse se développe sur deux fronts: nous nous concentrons sur les méthodes numériques des problèmes de contrôle optimal, en particulier sur le Principe de la Programmation Dynamique et sur le Model Predictive Control (MPC) et nous présentons des applications de techniques de contrôle en biologie. Dans la première partie, nous considérons l'approximation d'un problème de contrôle optimal avec horizon infini, qui combine une première étape, basée sur MPC permettant d'obtenir rapidement une bonne approximation de la trajectoire optimal, et une seconde étape, dans la quelle l¿équation de Bellman est résolue dans un voisinage de la trajectoire de référence. De cette façon, on peux réduire une grande partie de la taille du domaine dans lequel on résout l¿équation de Bellman et diminuer la complexité du calcul. Le deuxième sujet est le contrôle des méthodes Level Set: on considère un problème de contrôle optimal, dans lequel la dynamique est donnée par la propagation d'un graphe à une dimension, contrôlé par la vitesse normale. Un état finale est fixé, l'objectif étant de le rejoindre en minimisant une fonction coût appropriée. On utilise la programmation dynamique grâce à une réduction d'ordre de l'équation utilisant la Proper Orthogonal Decomposition. La deuxième partie est dédiée à l'application des méthodes de contrôle en biologie. On présente un modèle décrit par une équation aux dérivées partielles qui modélise l'évolution d'une population de cellules tumorales. On analyse les caractéristiques du modèle et on formule et résout numériquement un problème de contrôle optimal concernant ce modèle, où le contrôle représente la quantité du médicament administrée. / This thesis is divided in two parts: in the first part we focus on numerical methods for optimal control problems, in particular on the Dynamic Programming Principle and on Model Predictive Control (MPC), in the second part we present some applications of the control techniques in biology. In the first part of the thesis, we consider the approximation of an optimal control problem with an infinite horizon, which combines a first step based on MPC, to obtain a fast but rough approximation of the optimal trajectory and a second step where we solve the Bellman equation in a neighborhood of the reference trajectory. In this way, we can reduce the size of the domain in which the Bellman equation can be solved and so the computational complexity is reduced as well. The second topic of this thesis is the control of the Level Set methods: we consider an optimal control, in which the dynamics is given by the propagation of a one dimensional graph, which is controlled by the normal velocity. A final state is fixed and the aim is to reach the trajectory chosen as a target minimizing an appropriate cost functional. To apply the Dynamic Programming approach we firstly reduce the size of the system using the Proper Orthogonal Decomposition. The second part of the thesis is devoted to the application of control methods in biology. We present a model described by a partial differential equation that models the evolution of a population of tumor cells. We analyze the mathematical and biological features of the model. Then we formulate an optimal control problem for this model and we solve it numerically.

Page generated in 0.0611 seconds