• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização e fabricação de dispositivos piezelétricos com gradação funcional de material. / Optimization and manufacturing of piezoelectric devices with functionally graded materials.

Amigo, Ricardo Cesare Román 18 January 2013 (has links)
Cerâmicas piezelétricas possibilitam posicionamento e sensoriamento de precisão ou captação de energia mecânica valendo-se do efeito piezelétrico, capaz de converter energia mecânica em elétrica ou o contrário. Para aprimorar ou estender as aplicações dessas cerâmicas, mecanismos flexíveis podem ser acoplados a elas, formando um Dispositivo Piezelétrico Flextensional (DPF). No projeto desse tipo de estrutura, o conceito de Material com Gradação Funcional (MGF) é interessante, já que esses materiais apresentam variações graduais de suas propriedades efetivas, permitindo a alternância entre um material mais flexível e um mais rígido de acordo com a intensidade de deslocamento desejada em cada região da estrutura. Assim, neste trabalho, implementa-se o Método de Otimização Topológica (MOT) no projeto de estruturas gradadas com o intuito de identificar as vantagens e desvantagens da utilização do conceito de MGF em DPF. Esse método combina algoritmos de otimização e o Métodos dos Elementos Finitos (MEF) para distribuir material dentro de um domínio fixo através de um modelo de material, que no presente caso é o de Material Isotrópico Sólido com Penalização (MISP) adaptado a MGF. Na fabricação desses dispositivos otimizados, utiliza-se a Sinterização por Jato de Plasma (SJP) para a obtenção de tarugos gradados que são submetidos a processos de eletro-erosão e de corte a laser. Por fim, para a verificação dos resultados numéricos, utiliza-se um vibrômetro para aferir os deslocamentos dos protótipos de atuadores fabricados. / Piezoelectric devices enable precision positioning and sensing or mechanical energy harvesting based on the piezoelectric effect. In flextensional piezoelectric devices, flexible coupling structures are attached to ceramics to improve or extend the application possibilities. On the design of this kind of structure, the concept of Functionally Graded Materials (FGM) can be interesting, since it allows gradual variations of its effective properties along some direction by mixing two or more materials. Thus, in order to identify the advantages and disadvantages of using FGM, graded flexible coupling structures that maximize the performance of piezoelectric devices are obtained by implementing the Topology Optimization Method (TOM). This method combines optimization algorithms and the Finite Element Method (FEM) to distribute material inside a fixed domain. In this work, the formulation is based on the Solid Isotropic Material with Penalization (SIMP) material model adapted for the FGM concept, which can represent continuous change in material properties along the domain. Resulting optimal graded topologies of coupling structures are presented and compared with homogeneous structures. Finally, graded devices are manufactured through Spark Plasma Sintering (SPS) technique in order to be characterized, validating numerical results. The numerical results demonstrate the TOM efficacy in designing functionally graded piezoelectric devices and show, by its implementation, significant gains in graded mechanisms performance when compared with analogous homogeneous. Furthermore, the feasibility of proposed manufacturing process is confirmed, allowing the fabrication of prototypes with expected behavior.
2

Otimização e fabricação de dispositivos piezelétricos com gradação funcional de material. / Optimization and manufacturing of piezoelectric devices with functionally graded materials.

Ricardo Cesare Román Amigo 18 January 2013 (has links)
Cerâmicas piezelétricas possibilitam posicionamento e sensoriamento de precisão ou captação de energia mecânica valendo-se do efeito piezelétrico, capaz de converter energia mecânica em elétrica ou o contrário. Para aprimorar ou estender as aplicações dessas cerâmicas, mecanismos flexíveis podem ser acoplados a elas, formando um Dispositivo Piezelétrico Flextensional (DPF). No projeto desse tipo de estrutura, o conceito de Material com Gradação Funcional (MGF) é interessante, já que esses materiais apresentam variações graduais de suas propriedades efetivas, permitindo a alternância entre um material mais flexível e um mais rígido de acordo com a intensidade de deslocamento desejada em cada região da estrutura. Assim, neste trabalho, implementa-se o Método de Otimização Topológica (MOT) no projeto de estruturas gradadas com o intuito de identificar as vantagens e desvantagens da utilização do conceito de MGF em DPF. Esse método combina algoritmos de otimização e o Métodos dos Elementos Finitos (MEF) para distribuir material dentro de um domínio fixo através de um modelo de material, que no presente caso é o de Material Isotrópico Sólido com Penalização (MISP) adaptado a MGF. Na fabricação desses dispositivos otimizados, utiliza-se a Sinterização por Jato de Plasma (SJP) para a obtenção de tarugos gradados que são submetidos a processos de eletro-erosão e de corte a laser. Por fim, para a verificação dos resultados numéricos, utiliza-se um vibrômetro para aferir os deslocamentos dos protótipos de atuadores fabricados. / Piezoelectric devices enable precision positioning and sensing or mechanical energy harvesting based on the piezoelectric effect. In flextensional piezoelectric devices, flexible coupling structures are attached to ceramics to improve or extend the application possibilities. On the design of this kind of structure, the concept of Functionally Graded Materials (FGM) can be interesting, since it allows gradual variations of its effective properties along some direction by mixing two or more materials. Thus, in order to identify the advantages and disadvantages of using FGM, graded flexible coupling structures that maximize the performance of piezoelectric devices are obtained by implementing the Topology Optimization Method (TOM). This method combines optimization algorithms and the Finite Element Method (FEM) to distribute material inside a fixed domain. In this work, the formulation is based on the Solid Isotropic Material with Penalization (SIMP) material model adapted for the FGM concept, which can represent continuous change in material properties along the domain. Resulting optimal graded topologies of coupling structures are presented and compared with homogeneous structures. Finally, graded devices are manufactured through Spark Plasma Sintering (SPS) technique in order to be characterized, validating numerical results. The numerical results demonstrate the TOM efficacy in designing functionally graded piezoelectric devices and show, by its implementation, significant gains in graded mechanisms performance when compared with analogous homogeneous. Furthermore, the feasibility of proposed manufacturing process is confirmed, allowing the fabrication of prototypes with expected behavior.
3

Estudo do aumento do desempenho de um sistema de tomografia de impedância elétrica através do método de otimização topológica. / Increasing electrial impedance tomography system performance through the topology optimization method.

Mello, Luís Augusto Motta 27 January 2010 (has links)
A Tomografia de Impedância Elétrica é uma técnica de obtenção de imagens do interior de um corpo, mediante grandezas elétricas medidas em sua superfície. Matematicamente, a técnica determina as distribuições de condutividades e permissividades elétricas num dado modelo do corpo, as quais reproduzem as medidas de correntes e potenciais elétricos em eletrodos fixados ao corpo. Nesse caso, as distribuições de condutividades e permissividades representam a solução de um problema não-linear e mal-posto, o qual é instável e apresenta mínimos locais, requerendo técnicas de inversão específicas. Um sistema de Tomografia de Impedância Elétrica aplicado à obtenção de imagens de valores absolutos possui, atualmente, limitações. São algumas delas a obtenção de distribuições de propriedades suaves e de valores geralmente subestimados, a sensibilidade elevada ao erro de posicionamento dos eletrodos (com relação ao modelo) e ao erro nos valores de parâmetros de contato, a sensibilidade elevada aos ruídos de medição, os tempos elevados de processamento, dentre outros. Com o intuito de abordar as limitações, melhorando o desempenho do sistema de Tomografia de Impedância Elétrica de imagens absolutas, são então propostas e avaliadas ferramentas baseadas no Método de Otimização Topológica no atual trabalho. Mais especificamente, avaliam-se: 1) um método para obtenção de parâmetros de contato em conjunto com uma imagem e um método de regularização baseado no controle explícito da variação espacial da imagem, 2) uma formulação para acomodação de incertezas, 3) uma formulação para correção do posicionamento de eletrodos, 4) uma formulação para projeto de eletrodos e 5) um novo solucionador de sistemas lineares de larga escala. Os resultados mostram a efetividade da maioria das técnicas propostas, e sugerem os novos tópicos de pesquisa em Tomografia de Impedância Elétrica. / Electrical Impedance Tomography images the interior of a body based on electrical quantities measured on the surface of it. Mathematically, the technique finds the electric admittivity distribution in a given body model which reproduces the boundary measurements of electric currents and potentials on electrodes attached to that body. Therefore, the admittivity distribution is the solution of a non-linear and ill-posed problem, which is unstable and have local minima, requiring specific inversion techniques. Electrical Impedance Tomography systems which obtain images corresponding to absolute values present limitations. For instance, the results are usually smooth and underestimated, the sensitivity to errors in the positioning of electrodes and wrong values of contact parameters and the sensitivity to measurement noise are high, the data processing time is high, etc. In this work, techniques based on the Topology Optimization Method intended for improving the performance of the particular Electrical Impedance Tomography system applied to absolute images are proposed and evaluated. More specifically, the following techniques are evaluated: 1) a method intended to obtain contact parameters together with images, and a regularization method based on the explicit control of the spatial variation regarding the image, 2) a formulation applied to handle uncertainties, 3) a formulation applied to correct the position of electrodes, 4) a formulation applied to design electrodes, 5) and a new solver for large-scale linear systems. Results show the effectiveness of most of the proposed techniques, and suggest new research topics in Electrical Impedance Tomography.
4

Estudo do aumento do desempenho de um sistema de tomografia de impedância elétrica através do método de otimização topológica. / Increasing electrial impedance tomography system performance through the topology optimization method.

Luís Augusto Motta Mello 27 January 2010 (has links)
A Tomografia de Impedância Elétrica é uma técnica de obtenção de imagens do interior de um corpo, mediante grandezas elétricas medidas em sua superfície. Matematicamente, a técnica determina as distribuições de condutividades e permissividades elétricas num dado modelo do corpo, as quais reproduzem as medidas de correntes e potenciais elétricos em eletrodos fixados ao corpo. Nesse caso, as distribuições de condutividades e permissividades representam a solução de um problema não-linear e mal-posto, o qual é instável e apresenta mínimos locais, requerendo técnicas de inversão específicas. Um sistema de Tomografia de Impedância Elétrica aplicado à obtenção de imagens de valores absolutos possui, atualmente, limitações. São algumas delas a obtenção de distribuições de propriedades suaves e de valores geralmente subestimados, a sensibilidade elevada ao erro de posicionamento dos eletrodos (com relação ao modelo) e ao erro nos valores de parâmetros de contato, a sensibilidade elevada aos ruídos de medição, os tempos elevados de processamento, dentre outros. Com o intuito de abordar as limitações, melhorando o desempenho do sistema de Tomografia de Impedância Elétrica de imagens absolutas, são então propostas e avaliadas ferramentas baseadas no Método de Otimização Topológica no atual trabalho. Mais especificamente, avaliam-se: 1) um método para obtenção de parâmetros de contato em conjunto com uma imagem e um método de regularização baseado no controle explícito da variação espacial da imagem, 2) uma formulação para acomodação de incertezas, 3) uma formulação para correção do posicionamento de eletrodos, 4) uma formulação para projeto de eletrodos e 5) um novo solucionador de sistemas lineares de larga escala. Os resultados mostram a efetividade da maioria das técnicas propostas, e sugerem os novos tópicos de pesquisa em Tomografia de Impedância Elétrica. / Electrical Impedance Tomography images the interior of a body based on electrical quantities measured on the surface of it. Mathematically, the technique finds the electric admittivity distribution in a given body model which reproduces the boundary measurements of electric currents and potentials on electrodes attached to that body. Therefore, the admittivity distribution is the solution of a non-linear and ill-posed problem, which is unstable and have local minima, requiring specific inversion techniques. Electrical Impedance Tomography systems which obtain images corresponding to absolute values present limitations. For instance, the results are usually smooth and underestimated, the sensitivity to errors in the positioning of electrodes and wrong values of contact parameters and the sensitivity to measurement noise are high, the data processing time is high, etc. In this work, techniques based on the Topology Optimization Method intended for improving the performance of the particular Electrical Impedance Tomography system applied to absolute images are proposed and evaluated. More specifically, the following techniques are evaluated: 1) a method intended to obtain contact parameters together with images, and a regularization method based on the explicit control of the spatial variation regarding the image, 2) a formulation applied to handle uncertainties, 3) a formulation applied to correct the position of electrodes, 4) a formulation applied to design electrodes, 5) and a new solver for large-scale linear systems. Results show the effectiveness of most of the proposed techniques, and suggest new research topics in Electrical Impedance Tomography.

Page generated in 0.1244 seconds