• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • Tagged with
  • 15
  • 15
  • 15
  • 12
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise da dinâmica eletrônica em uma configuração de campos eletromagnéticos pertinentes a propulsores Hall

Marini, Samuel January 2011 (has links)
Um propulsor do tipo Hall é um mecanismo que utiliza predominantemente uma configuração de campos eletromagnéticos Hall, um campo elétrico perpendicular a um campo magnético, para confinar elétrons e acelerar íons. Os elétrons são confinados dentro de um canal de aceleração onde os campos eletromagnéticos estão presentes. Um gás neutro é lançado dentro desse canal de aceleração de forma que os elétrons confinados podem colidir com os átomos do gás e os ionizar. Os íons gerados dessas colisões, elétrons-gás, são fortemente repelidos para fora do canal de aceleração pelo campo elétrico. A expulsão desses íons é o fator responsável pela propulsão. Nesses propulsores é importante que os elétrons estejam confinados dentro do canal de aceleração e que sejam capazes de produzir o maior número possível de íons. Visando determinar quais são os parâmetros de controle– intensidade dos campos eletromagnéticos– que propiciam uma dinâmica eletrônica com essas características, derivamos, via formalismo Hamiltoniano, as equações de movimento de um elétron e as analisamos. Dessas equações de movimento encontramos funções analíticas que indicam os limites geométricos atingidos pelo elétron dentro do sistema propulsor para cada conjunto de parâmetros de controle. Essas funções constituem o critério de confinamento eletrônico utilizado nesse trabalho. Além disso, a partir das equações de movimento, mostramos quais as configurações de campos eletromagnéticos que teoricamente incrementam o desempenho dos propulsores Hall. Verificamos que nas configurações de maior desempenho a dinâmica eletrônica é caótica. Neste trabalho, o caos é determinado com o auxílio dos mapas de Poincaré e dos expoentes de Lyapunov. / A Hall thruster is a system that utilizes an electromagnetic fields configuration predominantly like Hall, an electric field which lies perpendicular to a magnetic field, to confine electrons and to accelerate ions. The electrons are confined within an acceleration chamber where the electromagnetic fields are present. A neutral gas is released within this acceleration chamber so that the confined electrons can collide with the gas and ionize it. The ions generated from these collisions, the electron-gas, are strongly repelled by the electric field system. The expulsion of these ions generate the propulsion. In these thrusters it is very important that the electrons are confined within the acceleration chamber and are able to produce the largest possible number of ions. In order to determine the control parameters, that is, the electromagnetic fields intensity which provides an electronic dynamic with these characteristics; we derived, via Hamiltonian formalism, the motion equations for an electron and we analyzed them. From these motion equations, we found functions that indicate the electron geometric boundaries within these thrusters, for each set of control parameters. In this work, these functions indicate the electronic confinement. Moreover, from the motion equations, we showed the electromagnetic fields settings which theoretically improve the Hall thruster’s performance. We found that, in these higher performance settings, the electron dynamics is chaotic. In this work, the chaos is determined by Poincaré maps and by Lyapunov exponents.
12

Análise da dinâmica eletrônica em uma configuração de campos eletromagnéticos pertinentes a propulsores Hall

Marini, Samuel January 2011 (has links)
Um propulsor do tipo Hall é um mecanismo que utiliza predominantemente uma configuração de campos eletromagnéticos Hall, um campo elétrico perpendicular a um campo magnético, para confinar elétrons e acelerar íons. Os elétrons são confinados dentro de um canal de aceleração onde os campos eletromagnéticos estão presentes. Um gás neutro é lançado dentro desse canal de aceleração de forma que os elétrons confinados podem colidir com os átomos do gás e os ionizar. Os íons gerados dessas colisões, elétrons-gás, são fortemente repelidos para fora do canal de aceleração pelo campo elétrico. A expulsão desses íons é o fator responsável pela propulsão. Nesses propulsores é importante que os elétrons estejam confinados dentro do canal de aceleração e que sejam capazes de produzir o maior número possível de íons. Visando determinar quais são os parâmetros de controle– intensidade dos campos eletromagnéticos– que propiciam uma dinâmica eletrônica com essas características, derivamos, via formalismo Hamiltoniano, as equações de movimento de um elétron e as analisamos. Dessas equações de movimento encontramos funções analíticas que indicam os limites geométricos atingidos pelo elétron dentro do sistema propulsor para cada conjunto de parâmetros de controle. Essas funções constituem o critério de confinamento eletrônico utilizado nesse trabalho. Além disso, a partir das equações de movimento, mostramos quais as configurações de campos eletromagnéticos que teoricamente incrementam o desempenho dos propulsores Hall. Verificamos que nas configurações de maior desempenho a dinâmica eletrônica é caótica. Neste trabalho, o caos é determinado com o auxílio dos mapas de Poincaré e dos expoentes de Lyapunov. / A Hall thruster is a system that utilizes an electromagnetic fields configuration predominantly like Hall, an electric field which lies perpendicular to a magnetic field, to confine electrons and to accelerate ions. The electrons are confined within an acceleration chamber where the electromagnetic fields are present. A neutral gas is released within this acceleration chamber so that the confined electrons can collide with the gas and ionize it. The ions generated from these collisions, the electron-gas, are strongly repelled by the electric field system. The expulsion of these ions generate the propulsion. In these thrusters it is very important that the electrons are confined within the acceleration chamber and are able to produce the largest possible number of ions. In order to determine the control parameters, that is, the electromagnetic fields intensity which provides an electronic dynamic with these characteristics; we derived, via Hamiltonian formalism, the motion equations for an electron and we analyzed them. From these motion equations, we found functions that indicate the electron geometric boundaries within these thrusters, for each set of control parameters. In this work, these functions indicate the electronic confinement. Moreover, from the motion equations, we showed the electromagnetic fields settings which theoretically improve the Hall thruster’s performance. We found that, in these higher performance settings, the electron dynamics is chaotic. In this work, the chaos is determined by Poincaré maps and by Lyapunov exponents.
13

Relaxation and quasi-stationary states in systems with long-range interactions / Relaxação e estados quasi-estacionários em sistemas com in- terações de longo alcance

Benetti, Fernanda Pereira da Cruz January 2016 (has links)
Sistemas cujos componentes interagem por meio de forças de longo alcance não-blindadas por exemplo, sistemas estelares e plasmas não-neutros têm algumas características anô- malas em relação a sistemas com forças blindadas ou de curto alcance. Além de apresentarem características termodinâmicas peculiares como calor especí co negativo e inequivalência de ensembles, sua dinâmica é predominantemente não-colisional e leva à estados quasiestacion ários fora de equilíbrio. Esses estados são notoriamente difíceis de prever dada uma condição inicial qualquer, e ainda não existe uma teoria uni cada para tratá-los. O equilíbrio termodinâmico é atingido somente após tempos longos que escalam com o tamanho do sistema, muitas vezes excedendo o tempo de vida do universo. A relaxação para o equilíbrio, portanto, tem duas escalas de tempo: uma, curta, que leva a estados quasi-estacionários fora de equilíbrio, e a segunda, longa, que leva ao equilíbrio termodinâmico. Nesta tese de doutorado, examinamos esses fenômenos aplicando modelos teóricos e simulação numérica para diferentes sistemas de interação de longo-alcance, incluindo um modelo de spins clássicos tipo XY com longo alcance, e o sistema auto-gravitante em três dimensões. Em uma segunda etapa, estudamos a relaxação para o equilíbrio termodinâmico, a relaxação colisional, através de equações cinéticas e simulação numérica. Desta forma, buscamos esclarecer os mecanismos por trás dos estados quasi-estacionários e da relaxação colisional. / Systems whose components interact by unscreened long-range forces for example, stellar systems and non-neutral plasmas have characteristics that are anomalous with respect to systems with shielded or short-range forces. Besides presenting unique thermodynamic properties such as negative speci c heat and inequivalence of ensembles, their dynamics is predominantly collisionless and leads to out-of-equilibrium quasi-stationary states. These states are notoriously di cult to predict given an arbitrary initial condition, and there is still no uni ed theory to treat them. Thermodynamic equilibrium is reached only after long timescales that increase with the system size and often exceed the lifetime of the universe. Relaxation to equilibrium, therefore, has two timescales: one short, leading to outof- equilibrium quasi-stationary states, and a second, longer, which leads to thermodynamic equilibrium. In this thesis, we examine these phenomena by applying theoretical models and numerical simulation for di erent long-range interacting systems, including a model of classical XY-type spins with long-range interactions, and the self-gravitating system in three dimensions. In a second stage we study the collisional relaxation to thermodynamic equilibrium through kinetic equations and numerical simulation. We thus seek to clarify the mechanisms behind the quasi-stationary states and collisional relaxation.
14

Relaxation and quasi-stationary states in systems with long-range interactions / Relaxação e estados quasi-estacionários em sistemas com in- terações de longo alcance

Benetti, Fernanda Pereira da Cruz January 2016 (has links)
Sistemas cujos componentes interagem por meio de forças de longo alcance não-blindadas por exemplo, sistemas estelares e plasmas não-neutros têm algumas características anô- malas em relação a sistemas com forças blindadas ou de curto alcance. Além de apresentarem características termodinâmicas peculiares como calor especí co negativo e inequivalência de ensembles, sua dinâmica é predominantemente não-colisional e leva à estados quasiestacion ários fora de equilíbrio. Esses estados são notoriamente difíceis de prever dada uma condição inicial qualquer, e ainda não existe uma teoria uni cada para tratá-los. O equilíbrio termodinâmico é atingido somente após tempos longos que escalam com o tamanho do sistema, muitas vezes excedendo o tempo de vida do universo. A relaxação para o equilíbrio, portanto, tem duas escalas de tempo: uma, curta, que leva a estados quasi-estacionários fora de equilíbrio, e a segunda, longa, que leva ao equilíbrio termodinâmico. Nesta tese de doutorado, examinamos esses fenômenos aplicando modelos teóricos e simulação numérica para diferentes sistemas de interação de longo-alcance, incluindo um modelo de spins clássicos tipo XY com longo alcance, e o sistema auto-gravitante em três dimensões. Em uma segunda etapa, estudamos a relaxação para o equilíbrio termodinâmico, a relaxação colisional, através de equações cinéticas e simulação numérica. Desta forma, buscamos esclarecer os mecanismos por trás dos estados quasi-estacionários e da relaxação colisional. / Systems whose components interact by unscreened long-range forces for example, stellar systems and non-neutral plasmas have characteristics that are anomalous with respect to systems with shielded or short-range forces. Besides presenting unique thermodynamic properties such as negative speci c heat and inequivalence of ensembles, their dynamics is predominantly collisionless and leads to out-of-equilibrium quasi-stationary states. These states are notoriously di cult to predict given an arbitrary initial condition, and there is still no uni ed theory to treat them. Thermodynamic equilibrium is reached only after long timescales that increase with the system size and often exceed the lifetime of the universe. Relaxation to equilibrium, therefore, has two timescales: one short, leading to outof- equilibrium quasi-stationary states, and a second, longer, which leads to thermodynamic equilibrium. In this thesis, we examine these phenomena by applying theoretical models and numerical simulation for di erent long-range interacting systems, including a model of classical XY-type spins with long-range interactions, and the self-gravitating system in three dimensions. In a second stage we study the collisional relaxation to thermodynamic equilibrium through kinetic equations and numerical simulation. We thus seek to clarify the mechanisms behind the quasi-stationary states and collisional relaxation.
15

Análise da dinâmica eletrônica em uma configuração de campos eletromagnéticos pertinentes a propulsores Hall

Marini, Samuel January 2011 (has links)
Um propulsor do tipo Hall é um mecanismo que utiliza predominantemente uma configuração de campos eletromagnéticos Hall, um campo elétrico perpendicular a um campo magnético, para confinar elétrons e acelerar íons. Os elétrons são confinados dentro de um canal de aceleração onde os campos eletromagnéticos estão presentes. Um gás neutro é lançado dentro desse canal de aceleração de forma que os elétrons confinados podem colidir com os átomos do gás e os ionizar. Os íons gerados dessas colisões, elétrons-gás, são fortemente repelidos para fora do canal de aceleração pelo campo elétrico. A expulsão desses íons é o fator responsável pela propulsão. Nesses propulsores é importante que os elétrons estejam confinados dentro do canal de aceleração e que sejam capazes de produzir o maior número possível de íons. Visando determinar quais são os parâmetros de controle– intensidade dos campos eletromagnéticos– que propiciam uma dinâmica eletrônica com essas características, derivamos, via formalismo Hamiltoniano, as equações de movimento de um elétron e as analisamos. Dessas equações de movimento encontramos funções analíticas que indicam os limites geométricos atingidos pelo elétron dentro do sistema propulsor para cada conjunto de parâmetros de controle. Essas funções constituem o critério de confinamento eletrônico utilizado nesse trabalho. Além disso, a partir das equações de movimento, mostramos quais as configurações de campos eletromagnéticos que teoricamente incrementam o desempenho dos propulsores Hall. Verificamos que nas configurações de maior desempenho a dinâmica eletrônica é caótica. Neste trabalho, o caos é determinado com o auxílio dos mapas de Poincaré e dos expoentes de Lyapunov. / A Hall thruster is a system that utilizes an electromagnetic fields configuration predominantly like Hall, an electric field which lies perpendicular to a magnetic field, to confine electrons and to accelerate ions. The electrons are confined within an acceleration chamber where the electromagnetic fields are present. A neutral gas is released within this acceleration chamber so that the confined electrons can collide with the gas and ionize it. The ions generated from these collisions, the electron-gas, are strongly repelled by the electric field system. The expulsion of these ions generate the propulsion. In these thrusters it is very important that the electrons are confined within the acceleration chamber and are able to produce the largest possible number of ions. In order to determine the control parameters, that is, the electromagnetic fields intensity which provides an electronic dynamic with these characteristics; we derived, via Hamiltonian formalism, the motion equations for an electron and we analyzed them. From these motion equations, we found functions that indicate the electron geometric boundaries within these thrusters, for each set of control parameters. In this work, these functions indicate the electronic confinement. Moreover, from the motion equations, we showed the electromagnetic fields settings which theoretically improve the Hall thruster’s performance. We found that, in these higher performance settings, the electron dynamics is chaotic. In this work, the chaos is determined by Poincaré maps and by Lyapunov exponents.

Page generated in 0.0269 seconds