• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de algoritmo de clusterização para calorímetro frontal do experimento ALICE no LHC / Development of clustering algorithm for foward calorimeter in the ALICE experiment at the LHC

Silva, Danilo Anacleto Arruda da 22 September 2014 (has links)
O Grande Colisor de Hádrons (Large Hadron Collider - LHC) é um acelerador de prótons e íons pesados localizado no CERN (Conseil Européen pour la Recherche Nucléaire). Em um de seus experimentos, ALICE (A Large Ion Collider Experiment ), está sendo projetado um detector dedicado a explorar os aspectos únicos de colisões núcleo-núcleo. A principal finalidade do ALICE é estudar a formação de um novo estado da matéria, o plasma de quarks e glúon. Para isto devem-se ter medidas precisas de hádrons, elétrons, múons e fótons produzidos em colisões chumbo-chumbo. Assim está sendo proposto um calorímetro frontal (Foward Calorimeter - FoCal) como um upgrade para o ALICE. A função deste calorímetro é o estudo das funções de distribuição de pártons (Partons distribuction Functions - PDF) no regime de pequenos valores do x de Bjorken. Nesta região é esperado que estas PDFs tenham um comportamento não linear devido ao processo de saturação de glúons. Para o estudo desta região é necessária a medida de fótons diretos produzidos na colisão. Estes, por sua vez, ficam mascarados pelo fundo de fótons provenientes do decaimento de píon, o que leva a uma necessidade de suas identificações. Com isto surge a oportunidade para a utilização do método de clusterização que é uma ferramenta de mineração de dados. Este trabalho contribuiu para o desenvolvimento inicial de um algoritmo de clusterização para o calorímetro FoCal. / The Large Hadron Collider (LHC) is a CERN\'s accelerator that collides protons and heavy ions. One of its experiments, ALICE, is building a new detector to explore new aspects of heavy ions collisions. The Alice\'s main goal is to study the formation of quark-gluon plasma (QGP). To do that it\'s necessary to get accurate data on hadrons, electrons, muons and gammas created in lead-lead collision. So, to accomplish that a new calorimeter is in study to scan the foward region of experiment, the Foward Calorimeter (FoCal). It\'s proposed to study Parton Distribution Functions (PDFs) in a regime of very small Bjorken-x, where it is expected that the PDFs evolve non-linearly due to the high gluon densities, a phenomena referred to as gluon saturation.But to do that it\'s required to measure the direct gammas created on collision. These fotons are blended on by fotons descendant of pion. So there\'s a need to separate it from the direct gammas. One way to solve this problem is to use clustering methods (a type of mining data algorithm). This work helped on early stages of development that clustering algorithm.
2

Desenvolvimento de algoritmo de clusterização para calorímetro frontal do experimento ALICE no LHC / Development of clustering algorithm for foward calorimeter in the ALICE experiment at the LHC

Danilo Anacleto Arruda da Silva 22 September 2014 (has links)
O Grande Colisor de Hádrons (Large Hadron Collider - LHC) é um acelerador de prótons e íons pesados localizado no CERN (Conseil Européen pour la Recherche Nucléaire). Em um de seus experimentos, ALICE (A Large Ion Collider Experiment ), está sendo projetado um detector dedicado a explorar os aspectos únicos de colisões núcleo-núcleo. A principal finalidade do ALICE é estudar a formação de um novo estado da matéria, o plasma de quarks e glúon. Para isto devem-se ter medidas precisas de hádrons, elétrons, múons e fótons produzidos em colisões chumbo-chumbo. Assim está sendo proposto um calorímetro frontal (Foward Calorimeter - FoCal) como um upgrade para o ALICE. A função deste calorímetro é o estudo das funções de distribuição de pártons (Partons distribuction Functions - PDF) no regime de pequenos valores do x de Bjorken. Nesta região é esperado que estas PDFs tenham um comportamento não linear devido ao processo de saturação de glúons. Para o estudo desta região é necessária a medida de fótons diretos produzidos na colisão. Estes, por sua vez, ficam mascarados pelo fundo de fótons provenientes do decaimento de píon, o que leva a uma necessidade de suas identificações. Com isto surge a oportunidade para a utilização do método de clusterização que é uma ferramenta de mineração de dados. Este trabalho contribuiu para o desenvolvimento inicial de um algoritmo de clusterização para o calorímetro FoCal. / The Large Hadron Collider (LHC) is a CERN\'s accelerator that collides protons and heavy ions. One of its experiments, ALICE, is building a new detector to explore new aspects of heavy ions collisions. The Alice\'s main goal is to study the formation of quark-gluon plasma (QGP). To do that it\'s necessary to get accurate data on hadrons, electrons, muons and gammas created in lead-lead collision. So, to accomplish that a new calorimeter is in study to scan the foward region of experiment, the Foward Calorimeter (FoCal). It\'s proposed to study Parton Distribution Functions (PDFs) in a regime of very small Bjorken-x, where it is expected that the PDFs evolve non-linearly due to the high gluon densities, a phenomena referred to as gluon saturation.But to do that it\'s required to measure the direct gammas created on collision. These fotons are blended on by fotons descendant of pion. So there\'s a need to separate it from the direct gammas. One way to solve this problem is to use clustering methods (a type of mining data algorithm). This work helped on early stages of development that clustering algorithm.

Page generated in 0.1017 seconds