Spelling suggestions: "subject:"métododos multiescala"" "subject:"c.métodos multiescala""
1 |
Formulações multiescala localmente conservativas para a simulação de reservatórios de petróleo muito heterogêneos e anisotrópicosBARBOSA, Lorena Monteiro Cavalcanti 23 February 2017 (has links)
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-08-09T19:52:38Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Lorena Monteiro Cavalcanti Barbosa.pdf: 3341810 bytes, checksum: a11f35c60c2f472119efa988b23f0f6f (MD5) / Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-08-15T22:28:30Z (GMT) No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Lorena Monteiro Cavalcanti Barbosa.pdf: 3341810 bytes, checksum: a11f35c60c2f472119efa988b23f0f6f (MD5) / Made available in DSpace on 2018-08-15T22:28:30Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Lorena Monteiro Cavalcanti Barbosa.pdf: 3341810 bytes, checksum: a11f35c60c2f472119efa988b23f0f6f (MD5)
Previous issue date: 2017-02-23 / Os métodos multiescala são capazes de fornecer soluções numéricas acuradas para as equações de fluxos em reservatórios de petróleo altamente heterogêneos, com custos computacionais consideravelmente baixos quando comparados ao custo da simulação diretamente na escala mais fina. Um desafio as metodologias multiescala, em particular ao Método de Volumes Finitos Multiescala (MsFVM), consiste na simulação do escoamento em meios muito anisotrópicos, ou em meios que apresentem regiões com elevados gradientes de permeabilidade (exemplo: meios fraturados e com barreiras), isto acontece devido à necessidade do desacoplamento nas fronteiras dos sub-domínios, ou seja, o uso das condições de contorno reduzidas para calcular os operadore multiescalas. Essas condições de contorno configuram-se no núcleo das metodologias multiescala, pois desacoplam os subproblemas, possibilitando a obtenção de soluções na escala mais fina, porém, por não considerarem os fluxos normais às fronteiras, geram problemas de conservação nestas regiões. No presente trabalho, apresentamos uma variante do método multiescala, denominado Método Iterativo Multiescala Modificado para Volume de Controle (I-MMVCM). O I-MMVCM elimina a necessidade de uso dos volumes fantasmas, melhorando a acurácia dos operadores multiescala, e consequentemente aumenta a eficiência do método. A pressão é calculada em cada volume da malha grossa primal, utilizando as pressões anteriormente calculadas pelo MsFVM como condições de contorno de Dirichlet. Para garantir conservação em todo o domínio utilizamos dois métodos de correção, que visam corrigir o fluxo na malha grossa primal. Adicionalmente, comparamos os resultados obtidos por dois Métodos de Volumes Finitos com Aproximação de Fluxo por Múltiplos Pontos (MPFA), o MPFA-O ou MPFA-TPS (Triangle Pressure Support) e o MPFA-FPS (Full Pressure Support). Para a solução do problema de saturação utilizamos o Método de Ponderação à Montante de Primeira Ordem (First Order Upwind Method - FOUM), método dos volumes finitos de alta ordem (Higher Order Finite Volume –HOFV) e um método de linhas de fluxos (Streamlines). Finalmente, o sistema de equações governantes é resolvido seguindo a estratégia IMPES (Implicit Pressure, Explicit Saturation). / The multiscale methods are cable to provide accurate numerical solutions for the flow equations in highly heterogeneous petroleum reservoirs, with considerably lower computational costs when compared to the computational cost of simulating directly on the fine scale. A challenge for multiscale methods, in particular for the Multiscale Finite Volume Method (MSFVM), consist in modeling flow in highly anisotropic oil reservoir, or in medium with high permeability gradients (eg fractured media and barriers), it happens due to necessity of the decoupling at the frontier of the sub-domains, thais is, the use of reduced boundary conditions for calculate the multiscale operator. These boundary conditions are the core of all multiscale methodologies, they uncouple the problem into smaller subproblems, making it possible to obtain solutions on the fine scale, but since they do not consider the flows normal to the boundaries, they break the mass conservation law in these regions. In the present work, we present a variant of the multiscale method called the Iterative Modified Multiscale Control Volume Method (I-MMVCM). The I-MMVCM eliminates the need to use ghost volumes, improving the accuracy of multiscale operators, therefore increasing the efficiency of the method. The pressure is calculated on each volume of the primal coarse mesh, using the pressures previously calculated by the MsFVM as Dirichlet boundary conditions. In order to reimpose conservation in the domain we use two correction methods, which are designed to correct the upscaling flow of the primal coarse mesh. In addition, we compared the results obtained by two Finite Volume Methods with Multi-Point Flow Approximation (MPFA), the MPFA-O or MPFA-TPS (Triangle Pressure Support) and MPFA-FPS (Full Pressure Support). To solve the transport problem we use the First Order Upwind Method (FOUM), high order finite volume method (HOFV) and the method of the streamlines. Finally, the system of governing equations is solved using the Implicit Pressure Explicit Saturation (IMPES) strategy.
|
2 |
New enriched element methods for unsteady reaction-advection-diffusion models / Novos métodos de elementos finitos enriquecidos aplicados a modelos de reação-advecção-difusão transientesJairo Valões de Alencar Ramalho 20 December 2005 (has links)
Several problems in physics and engineering are modeled by reaction-advection-diffusion (RAD) equations. However, when the diffusive terms are small compared with the other ones, these problems can become difficult to solve numerically. Besides, formulating the unsteady version of these models in a semi-discrete fashion, it can be interpreted that the overall diffusivity gets smaller as the time step decreases. To overcome these drawbacks, this thesis considers the development of Galerkin (or Petrov-Galerkin) finite element methods based on approximation spaces enriched by residual-free bubbles (RFB) or multiscale functions. Beginning with the unsteady reaction-diffusion problem, new methods using multiscale functions are presented which improve the solutions in the reaction-dominated regime and/or when small time steps are adopted. They also give rise to a general concept of stabilizing unsteady problems differently along the time. In the following, it is shown that switching RFB by suitable multiscale functions in the elements connected to the outflow boundaries of the domain increases the accuracy of the solutions in this region for RAD problems with advection. Next, this methodology is further studied for systems of RAD equations. In a final contribution, an extension of the RFB method is introduced for the shallow waters equations. All these methods are tested through benchmark problems and compared with stabilized methods presenting stable and accurate results. / A modelagem de vários problemas físicos e de engenharia envolve a solução de problemas de transporte do tipo reação-advecção-difusão (RAD), porém, estes podem tornar-se singularmente perturbados quando os termos difusivos são pequenos comparados aos demais. Além disso, ao adotar formulações semi-discretas em problemas transientes, observa-se que diminuir o passo de tempo tem um efeito de redução da componente difusiva. Para superar estas dificuldades, esta tese considera o desenvolvimento de métodos de elementos finitos de Galerkin (ou Petrov-Galerkin) baseados em espaços de aproximação enriquecidos por funções bolhas livres do resíduo (RFB) ou funções multiescala. Começando pelo problema de reação-difusão transiente, novos métodos utilizando funções multiescala são apresentados, os quais melhoram as soluções no regime reativo-dominante e/ou quando pequenos passos de tempo são adotados. Com estes métodos, discute-se também o conceito de estabilização variável ao longo do tempo para problemas transientes. Na seqüência, verifica-se que utilizar funções multiescala nos elementos conectados às fronteiras de saída de fluxo do domínio e RFB nos demais elementos aumenta a precisão das soluções nesta região em problemas de RAD com advecção dominante. A seguir, esta metodologia é estudada para sistemas de RAD. Como contribuição final, estende-se o método RFB para o modelo de águas rasas. Todos estes métodos são submetidos a testes de robustez e comparados com métodos estabilizados, apresentando resultados estáveis e precisos.
|
3 |
Novos métodos de elementos finitos enriquecidos aplicados a modelos de reação-advecção-difusão transientes / New enriched element methods for unsteady reaction-advection-diffusion modelsRamalho, Jairo Valões de Alencar 20 December 2005 (has links)
Made available in DSpace on 2015-03-04T18:50:39Z (GMT). No. of bitstreams: 1
Apresentacao.pdf: 200775 bytes, checksum: 317576b779951158daadb5222c59a464 (MD5)
Previous issue date: 2005-12-20 / Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior / Several problems in physics and engineering are modeled by reaction-advection-diffusion (RAD) equations. However, when the diffusive terms are small compared with the other ones, these problems can become difficult to solve numerically. Besides, formulating the unsteady version of these models in a semi-discrete fashion, it can be interpreted that the overall diffusivity gets smaller as the time step decreases. To overcome these drawbacks, this thesis considers the development of Galerkin (or Petrov-Galerkin) finite element methods based on approximation spaces enriched by residual-free bubbles (RFB) or multiscale functions. Beginning with the unsteady reaction-diffusion problem, new methods using multiscale functions are presented which improve the solutions in the reaction-dominated regime and/or when small time steps are adopted. They also give rise to a general concept of stabilizing unsteady problems differently along the time. In the following, it is shown that switching RFB by suitable multiscale functions in the elements connected to the outflow boundaries of the domain increases the accuracy of the solutions in this region for RAD problems with advection. Next, this methodology is further studied for systems of RAD equations. In a final contribution, an extension of the RFB method is introduced for the shallow waters equations. All these methods are tested through benchmark problems and compared with stabilized methods presenting stable and accurate results. / A modelagem de vários problemas físicos e de engenharia envolve a solução de problemas de transporte do tipo reação-advecção-difusão (RAD), porém, estes podem tornar-se singularmente perturbados quando os termos difusivos são pequenos comparados aos demais. Além disso, ao adotar formulações semi-discretas em problemas transientes, observa-se que diminuir o passo de tempo tem um efeito de redução da componente difusiva. Para superar estas dificuldades, esta tese considera o desenvolvimento de métodos de elementos finitos de Galerkin (ou Petrov-Galerkin) baseados em espaços de aproximação enriquecidos por funções bolhas livres do resíduo (RFB) ou funções multiescala. Começando pelo problema de reação-difusão transiente, novos métodos utilizando funções multiescala são apresentados, os quais melhoram as soluções no regime reativo-dominante e/ou quando pequenos passos de tempo são adotados. Com estes métodos, discute-se também o conceito de estabilização variável ao longo do tempo para problemas transientes. Na seqüência, verifica-se que utilizar funções multiescala nos elementos conectados às fronteiras de saída de fluxo do domínio e RFB nos demais elementos aumenta a precisão das soluções nesta região em problemas de RAD com advecção dominante. A seguir, esta metodologia é estudada para sistemas de RAD. Como contribuição final, estende-se o método RFB para o modelo de águas rasas. Todos estes métodos são submetidos a testes de robustez e comparados com métodos estabilizados, apresentando resultados estáveis e precisos.
|
Page generated in 0.0538 seconds