• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métricas de Finsler esfericamente simétricas

Solórzano Chávez, Newton Mayer 11 March 2015 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, 2015. / Submitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2015-07-06T14:30:58Z No. of bitstreams: 1 2015_NewtonMayerSolorzanoChavez.pdf: 713834 bytes, checksum: fa5dcfcc4bcd42f4b02d1ce4b3e3f95b (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2015-08-18T12:21:50Z (GMT) No. of bitstreams: 1 2015_NewtonMayerSolorzanoChavez.pdf: 713834 bytes, checksum: fa5dcfcc4bcd42f4b02d1ce4b3e3f95b (MD5) / Made available in DSpace on 2015-08-18T12:21:50Z (GMT). No. of bitstreams: 1 2015_NewtonMayerSolorzanoChavez.pdf: 713834 bytes, checksum: fa5dcfcc4bcd42f4b02d1ce4b3e3f95b (MD5) / Consideramos métricas de Finsler esfericamente simétricas do tipo Douglas. Caracterizamos tais métricas por uma equação diferencial e obtemos a solução geral desta equação em termos de quatro funções arbitrárias. Quando as métricas de Finsler são esfericamente simétricas mostramos que as métricas do tipo Berwald coincidem com as do tipo Landsberg. Provamos que o problema de classificar as métricas esfericamente simétricas do tipo Douglas com S−curvatura nula reduz-se a classificar as métricas esfericmanete simétricas do tipo Berwald ou Landsberg. Obtemos a classificação de tais métricas. Incluímos vários exemplos e classes de novas métricas de Douglas. / We consider spherically symmetric Finsler metrics of Douglas type. We characterize such metrics by a differential equation and we obtain the general solution of this equation in terms of four arbitrary functions. For spherically symmetric Finsler metrics we show that the metrics of Berwald type coincide whit those of Landsberg type. We prove that the problem of classifying the spherically symmetric Douglas metrics whose S−curvature vanishes reduce to classifying the spherical symmetric metrics of Berwald or Landsberg type. We obtain the classification of such metrics. We include several examples and new classes of Douglas metrics.

Page generated in 0.0418 seconds