• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parametric approaches for modelling local structure tensor fields with applications to texture analysis / Approches paramétriques pour la modélisation de champs de tenseurs de structure locaux et applications en analyse de texture

Rosu, Roxana Gabriela 06 July 2018 (has links)
Cette thèse porte sur des canevas méthodologiques paramétriques pour la modélisation de champs de tenseurs de structure locaux (TSL) calculés sur des images texturées. Estimé en chaque pixel, le tenseur de structure permet la caractérisation de la géométrie d’une image texturée à travers des mesures d’orientation et d’anisotropie locales. Matrices symétriques semi-définies positives, les tenseurs de structure ne peuvent pas être manipulés avec les outils classiques de la géométrie euclidienne. Deux canevas statistiques riemanniens, reposant respectivement sur les espaces métriques a ne invariant (AI) et log-euclidien (LE), sont étudiés pour leur représentation. Dans chaque cas, un modèle de distribution gaussienne et de mélange associé sont considérés pour une analyse statistique. Des algorithmes d’estimation de leurs paramètres sont proposés ainsi qu’une mesure de dissimilarité. Les modèles statistiques proposés sont tout d’abord considérés pour décrire des champs de TSL calculés sur des images texturées. Les modèles AI et LE sont utilisés pour décrire des distributions marginales de TSL tandis que les modèles LE sont étendus afin de décrire des distributions jointes de TSL et de caractériser des dépendances spatiales et multi-échelles. L’ajustement des modèles théoriques aux distributions empiriques de TSL est évalué de manière expérimentale sur un ensemble de textures composées d’un spectre assez large de motifs structuraux. Les capacités descriptives des modèles statistiques proposés sont ensuite éprouvées à travers deux applications. Une première application concerne la reconnaissance de texture sur des images de télédétection très haute résolution et sur des images de matériaux carbonés issues de la microscopie électronique à transmission haute résolution. Dans la plupart des cas, les performances des approches proposées sont supérieures à celles obtenues par les méthodes de l’état de l’art. Sur l’espace LE, les modèles joints pour la caractérisation des dépendances spatiales au sein d’un champ de TSL améliorent légèrement les résultats des modèles opérant uniquement sur les distributions marginales. La capacité intrinsèque des méthodes basées sur le tenseur de structure à prendre en considération l’invariance à la rotation, requise dans beaucoup d’applications portant sur des textures anisotropes, est également démontrée de manière expérimentale. Une deuxième application concerne la synthèse de champs de TSL. A cet e et, des approches mono-échelle ainsi que des approches pyramidales multi-échelles respectant une hypothèse markovienne sont proposées. Les expériences sont effectuées à la fois sur des champs de TSL simulés et sur des champs de TSL calculés sur des textures réelles. Efficientes dans quelques configurations et démontrant d’un potentiel réel de description des modèles proposés, les expériences menées montrent également une grande sensibilité aux choix des paramètres qui peut s’expliquer par des instabilités d’estimation sur des espaces de grande dimension. / This thesis proposes and evaluates parametric frameworks for modelling local structure tensor (LST) fields computed on textured images. A texture’s underlying geometry is described in terms of orientation and anisotropy, estimated in each pixel by the LST. Defined as symmetric non-negative definite matrices, LSTs cannot be handled using the classical tools of Euclidean geometry. In this work, two complete Riemannian statistical frameworks are investigated to address the representation of symmetric positive definite matrices. They rely on the a ne-invariant (AI) and log-Euclidean (LE) metric spaces. For each framework, a Gaussian distribution and its corresponding mixture models are considered for statistical modelling. Solutions for parameter estimation are provided and parametric dissimilarity measures between statistical models are proposed as well. The proposed statistical frameworks are first considered for characterising LST fields computed on textured images. Both AI and LE models are first employed to handle marginal LST distributions. Then, LE models are extended to describe joint LST distributions with the purpose of characterising both spatial and multiscale dependencies. The theoretical models’ fit to empirical LST distributions is experimentally assessed for a texture set composed of a large diversity of patterns. The descriptive potential of the proposed statistical models are then assessed in two applications. A first application consists of texture recognition. It deals with very high resolution remote sensing images and carbonaceous material images issued from high resolution transmission electron microscopy technology. The LST statistical modelling based approaches for texture characterisation outperform, in most cases, the state of the art methods. Competitive texture classification performances are obtained when modelling marginal LST distributions on both AI and LE metric spaces. When modelling joint LST distributions, a slight gain in performance is obtained with respect to the case when marginal distributions are modelled. In addition, the LST based methods’ intrinsic ability to address the rotation invariance prerequisite that arises in many classification tasks dealing with anisotropic textures is experimentally validated as well. In contrast, state of the art methods achieve a rather pseudo rotation invariance. A second application concerns LST field synthesis. To this purpose, monoscale and multiscale pyramidal approaches relying on a Markovian hypothesis are developed. Experiments are carried out on toy LST field examples and on real texture LST fields. The successful synthesis results obtained when optimal parameter configurations are employed, are a proof of the real descriptive potential of the proposed statistical models. However, the experiments have also shown a high sensitivity to the parameters’ choice, that may be due to statistical inference limitations in high dimensional spaces.
2

Traitement de données dans les groupes de Lie : une approche algébrique. Application au recalage non-linéaire et à l'imagerie du tenseur de diffusion

Arsigny, Vincent 29 November 2006 (has links) (PDF)
Ces dernières années, le besoin de cadres rigoureux pour traiter des données non-linéaires s'est développé considérablement en imagerie médicale. Ici, nous avons proposé plusieurs cadres généraux pour traiter certains de ces types de données, qui appartiennent à des groupes de Lie. Pour ce faire, nous nous sommes appuyés sur les propriétés algébriques de ces espaces. Ainsi, nous avons présenté un cadre de traitement général pour les matrices symétriques définies positives, appelé log-euclidien, très simple à utiliser et avec d'excellentes propriétés théoriques ; il est particulièrement adapté au traitement des images de tenseurs de diffusion. Nous avons également proposé des cadres, dits polyaffines, pour paramétrer les transformations localement rigides ou affines, en garantissant leur inversibilité avec d'excellentes propriétés théoriques. Leur utilisation est illustrée avec succès dans le cas du recalage localement rigide de coupes histologiques et du recalage 3D localement affine d'IRMs du cerveau humain. Ce travail nous a menés à proposer deux cadres généraux nouveaux pour le calcul de statistiques dans les groupes de Lie en dimension finie : d'abord le cadre log-euclidien, qui généralise notre travail sur les tenseurs, et un cadre basé sur la notion nouvelle de moyenne bi-invariante, dont les propriétés généralisent celles de la moyenne arithmétique des espaces euclidiens. Enfin, nous avons généralisé notre cadre log-euclidien aux déformations géométriques difféomorphes afin de permettre un calclul simple des statistiques sur ces transformations, ce qui ouvre la voie à un cadre général et cohérent pour les statistiques en anatomie computationnelle.

Page generated in 0.0675 seconds