• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rol de BAG3 en la regulación del metabolismo muscular esquelético

Peña Oyarzún, Daniel January 2014 (has links)
Memoria para optar el título de Bioquímico / Autor no autoriza el acceso a texto completo de su documento hasta diciembre de 2015 / La proteína co-chaperona Bag3 es un factor clave en el control de la autofagia selectiva, un proceso de degradación de proteínas y organelos activado en respuesta a distintos estresores, en tejidos altamente diferenciados, como el músculo esquelético. Este último tejido transforma la energía química del ATP en energía mecánica para la contracción, por lo que el control del metabolismo de la glucosa resulta fundamental para mantener su función fisiológica. En este sentido, insulina, a través de sus efectores intracelulares Akt y mTORC1, promueve el ingreso y metabolismo de la glucosa. No obstante, en condiciones de estrés nutricional la proteína AMPK activa la autofagia para aumentar el metabolismo celular por degradación de diversas macromoléculas. Prueba de esta relación funcional entre metabolismo y autofagia es que la inhibición de la autofagia lleva a resistencia a la insulina en células musculares esqueléticas. Por otro lado, existe evidencia que los ratones knock-out para Bag3 presentan una disminución en los niveles de glucosa e insulina circulantes, y mueren a las 3 semanas de nacimiento con deterioro muscular progresivo. Sin embargo, hasta hoy se desconoce si Bag3 regula el metabolismo energético de la célula, y si las vías que controlan ese metabolismo se relacionan con la autofagia. En vista de estos antecedentes, se investigó si Bag3 altera la señalización de la vía Akt-AMPK-mTORC1, produciendo efectos metabólicos y de autofagia en miotubos L6 (línea celular: músculo esquelético de rata). A través de ensayos de captura de 3H-2-desoxiglucosa, consumo de oxígeno y detección densitométrica de GLUT4-myc en superficie, se determinó que las células con niveles reducidos de Bag3 (RNA interferente) y sin insulina en el sistema, incorporaron mayor cantidad de glucosa por un incremento de transportadores Glut-4 en la membrana celular junto con una mayor capacidad oxidativa mitocondrial. Lo anterior es debido a un aumento de la activación basal de Akt, evidenciado por Western blot contra Fosfo-Ser-473. Además, estas células presentaron una menor capacidad de activar la autofagia debido a un procesamiento disminuido de LC3, además de una menor activación de AMPK (Fosfo-Thr-172) y una sobre-activación de mTORC1 (Fosfo-Ser-2448). Finalmente, en presencia de insulina (100 nM, 20 min), las células con niveles reducidos de Bag3 presentaron una incorporación deficiente de glucosa para la cantidad de transportador Glut-4 exportado a la membrana, y una menor capacidad oxidativa mitocondrial. En estas condiciones, Akt se activó de forma normal ante insulina, observándose sin embargo que AMPK y mTORC1 se activó e inactivó, respectivamente; comportamiento inverso respecto a lo normal. Con estos datos, se propone a Bag3 como un novedoso regulador del metabolismo y la autofagia muscular esquelética / The co-chaperone protein Bag3 is a key factor for the control of selective autophagy, a degradation process of proteins and organelles activated in response to stress, in highly differentiated tissues, as the skeletal muscle. The role of the latter is to transform the chemical energy from ATP into mechanical energy for contraction, thus the metabolism control of glucose is important to keep its biological function. In that way, the hormone insulin, by its intracellular effectors Akt and mTORC1, promotes the uptake and metabolism of glucose. However, in nutritional stress conditions the AMPK protein activate autophagy in order to increase cellular metabolism by macromolecular degradation. Proof of this functional relationship between metabolism and autophagy is that autophagy abrogation leads to insulin resistance in muscle cells. On the other hand, there is evidence that shows that Bag3 Knock-out mice present diminished glucose and insulin in blood, and die after 3 weeks from birth with progressive muscle wasting. However, it is not known yet whether Bag3 regulates energy metabolism in the cell, nor whether the pathways that control that metabolism are related with Bag3 mediated autophagy. With this in mind, we decided to determine if Bag3 was able to alter the Akt-AMPK-mTORC1 signaling pathway, leading to metabolic and autophagy effects, in L6 myotubes (cell line: skeletal muscle from rat). By 3H-2-desoxyglucose uptake, oxygen consumption and GLUT4-myc surface detection assays, we were able to determine that cells with reduced levels of Bag3 (interference RNA), and without insulin in the system, had increased glucose uptake because of an augmented Glut-4 translocation to the cell membrane, along with an enhanced mitochondrial oxidative capacity. This is explained by an increased Akt basal activation, evidenced by Phospho-Ser-473 western blot. Furthermore, these cells showed a diminished capacity to produce autophagy, because of a decreased LC3 processing, along with a diminished activation of AMPK (Phospho-Thr-172) and an over activation of mTORC1 (Phospho-Ser-2448). Finally, in the presence of insulin (100 nM, 20 minutes), cells with diminished levels of Bag3 showed a deficient glucose uptake for the amount of Glut-4 transporter exported to cell membrane, and a decreased mitochondrial oxidative capacity. Under these conditions, Akt protein increased its activation, as normal, but AMPK was activated and mTORC1 was inactivated, an inverted behavior with respect to normal metabolism. With these data, we propose Bag3 as a novel regulator of metabolism and autophagy in muscle

Page generated in 0.0752 seconds