• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of M1 protein and actin-associated cellular cofactors in Influenza A Virus assembly and release / Rôle de la protéine M1 et des cofacteurs cellulaires associés à l’actine dans l’assemblage et la libération du virus de la Grippe A

Dash, Shantoshini 09 October 2017 (has links)
Le virus de la grippe A (le H1N1) pdm09, généralement connu comme le virus de la grippe porcine, a causé la toute première pandémie du 21e siècle. Le virus de grippe est un virus enveloppé à ARN qui utilise la machinerie cellulaire de l’hôte pour s’assembler à la membrane plasmique de la cellule et être relargué à l’extérieur. Dans cette étude, nous nous sommes intéressés au rôle de la protéine virale de matrice M1 dans ce processus. M1 est la protéine la plus abondante et elle est extrêmement importante pour le virus de la grippe. Les 164 résidus de la protéine M1 situés en N-terminal comprennent deux domaines basiques qui sont : le triplet d’arginine (R76/77/78) sur l'hélice 5 et le signal de localisation nucléaire sur l'hélice 6. Ils sont très bien conservés parmi les sous types de la grippe. Premièrement, pour étudier l'interaction M1-membrane, nous avons développé et standardisé un système minimal regroupant M1+M2+NS1/NEP (±M) dans lequel nous pourrons aussi observer la production de VLPs incorporant M1. En utilisant ce système, nous avons créé des mutations dans le triplet d’arginine de M1 et avons regardé l'accrochage de M1 à la membrane ainsi que l'incorporation de M1 dans les VLPs. La conséquence de ces mutations est que la protéine M1 reste dans le cytosol et qu’il y a une réduction drastique du nombre de VLPs contenant M1 relargués. La mutation du triplet arginine par un triplet alanine inhibe complètement la production de VLPs. De plus, un virus mutant avec ce triplet d’alanine n’est plus capable de produire des virions infectieux. Ainsi nous avons mis en évidence l'importance du triplet arginine dans l'accrochage de M1 à la membrane et la production de virions. Par conséquent, pour étudier l’utilisation de l'actine et de ses cofacteurs par le virus, nous avons utilisé de petits ARN interférents pour inhiber l’expression de gènes dans un système minimal de production de VLPs. Nous avons observé une réduction de la production de VLPs contenant M1 en inhibant Rac1et une augmentation de la libération de VLPs contenant M1 en inhibant RhoA et Cdc42. En utilisant un virus IAV (H3N2)-nanoluciferase sur les cellules A549 pulmonaires, nous avons étudié l'effet de la déplétion des RhoGTPases et de leurs effecteurs sur la production virale. Nous avons observé qu'avec Rac1, l'inhibition de Wave2 et Arp3 réduit aussi le pouvoir infectieux du virus H3N2 au cours des étapes tardives de l'infection sans affecter la phase précoce de d'infection. Les protéines interagissant avec M1 ont été identifiées par LC-MS/MS et incluent la cofiline et l’annexine A2. La cofiline, déjà connue pour participer à la réorganisation de l’actine pendant la phase tardive de l’infection par le virus de la grippe, est aussi un effecteur activé par Rac1, Wave2, Pak1 et LIMK afin de former des lamellipodes. L’annexine A2 est aussi connue pour séquestrer la PS au niveau du feuillet interne de la membrane plasmique cellulaire. La reconnaissance de ces groupes de PS par la protéine virale M1 amorcera finalement le processus d’assemblage viral. Ainsi, nos résultats, en décrivant le mécanisme d'accrochage de M1 à la membrane, montrent aussi que Rac1, Wave2 et Arp3 sont probablement des facteurs pro-viraux de l’assemblage et de la libération des virus de la grippe A. / The influenza A(H1N1)pdm09 virus, commonly known as swine flu, caused the very first pandemic of 21st century. Influenza virus, an enveloped RNA virus, uses the host cellular machinery for its assembly and release from the host cell plasma membrane. In this study, we were interested in the role of the viral M1 matrix protein in this process. M1 is the most abundant and vitally important protein present in influenza virus. The N-terminal 164 residues of M1 protein comprise of two basic domains which are the arginine triplet (R76/77/78) on helix 5 and the nuclear localization signal on helix 6, which are very well conserved among the influenza A virus subtypes. Firstly, to study M1-membrane interaction, we developed and standardized a minimal system consisting of M1+M2+NS1/NEP(±M) in which we could also observe production of VLPs incorporating M1. Using this system, we performed mutations in the M1 arginine triplet and looked at changes in M1 membrane attachment and M1 incorporation in VLP. As a result of these mutations, the M1 protein remained cytosolic and there was a drastic reduction in M1 containing VLP release. Mutating the entire arginine triplet to an alanine triplet inhibited VLP production completely. Also, a mutant virus with this alanine triplet failed completely to produce infectious virions. Thus we established the importance of the arginine triplet in M1 membrane attachment and virion production. Consequently, to study manipulation of actin and its cofactors by the virus, we used siRNA mediated gene silencing in the VLP producing minimal system. We observed a reduction in M1 containing VLP production upon inhibition of Rac1 and enhancement of M1 containing VLPs released upon inhibition of RhoA and Cdc42. By using an IAV (H3N2)-nanoluciferase virus on pulmonary A549 cells, we studied effect of depletion of RhoGTPases and their effectors on virus production. We observed that along with Rac1, inhibition of Wave2 and Arp3 also reduces the infectivity of H3N2 virus at the late phase of infection without any effect on the early phase of infection. The proteins interacting with M1 were identified by LC-MS/MS and included cofilin and annexin A2. Cofilin, already known to take part in the actin reorganization during the late phase of influenza A virus infection, is also one of the downstream effector linked to Rac1, Wave2, Pak1 and LIMK, for lamellipodia formation. Annexin A2 is also known to sequester PS at the inner leaflet of the cell plasma membrane. The viral protein M1 is able to recognize these clusters of PS, which ultimately initiates the viral assembly process. Thus, our results, while defining the mechanism of M1 membrane attachment, also indicate the possible involvement of Rac1, Wave2 and Arp3 as pro-viral factors in IAV assembly and release.
2

Implication des domaines basiques de la protéine de matrice M1 dans l'assemblage membranaire du virus de la grippe A / Role of the M1 Matrix Protein in Influenza A Viral Assembly : Implication of its Basic Domains

Kerviel, Adeline 15 December 2014 (has links)
Lors de la réplication du virus de la grippe, la protéine de matrice M1 prend part au transport des complexes vRNP. Elle interagit également avec les queues cytoplasmiques des protéines virales membranaires et la membrane plasmique de la cellule hôte au site d'assemblage, et est responsable de la structure de la particule virale. Le domaine N-terminal de M1, composé des 164 premiers acides aminés, possède deux motifs basiques exposés : un signal de localisation nucléaire (NLS, 101-105) sur l'hélice 6 et un triplet d'arginines (76-78) sur l'hélice 5. L'objectif de cette thèse était d'étudier (1) le rôle de ce domaine basique, en comparaison avec le NLS, dans l'accrochage membranaire de M1 et dans l'assemblage du virus de la grippe A/H1N1pdm2009 et (2) de définir dans notre système expérimental cellulaire les protéines virales requises pour la production de VLP (Virus Like Particles) de la grippe contenant M1. In vitro, par des tests de cosédimentation de protéines recombinantes M1 (domaine N-terminal) sauvages ou mutées avec des LUVs (Large Unilamellar Vesicles) contenant des lipides chargés négativement, il fut possible d'observer que les domaines basiques (NLS et triplet d'arginines) sont impliqués dans l'interaction M1-membranes biomimétiques, via une interaction électrostatique entre M1 et les lipides chargés négativement (comme la PS). In cellulo, nous avons pu observer que M1, lorsqu'elle est exprimée seule, ne s'accroche pas de manière efficace à la membrane. Par contre, lorsque M2 et NS1/NEP sont coexprimées, la fraction de M1 liée aux membranes est dix fois plus importante. De plus, la coexpression de M1, M2 et NS1/NEP nous permet d'observer la production de VLP par Western blot et AFM (Atomic Force Microscopy), même en absence des glycoprotéines d'enveloppe HA et NA. Par mutagenèse dirigée, nous avons pu observer que les résidus chargés négativement de la queue cytoplasmique de M2 sont nécessaires à la localisation membranaire de M1 et à la production de VLP, comme décrits dans la littérature. De manière intéressante, quand un mutant du triplet d'arginines est exprimé, il y a trois fois moins de M1 accrochée aux membranes (M1 reste cytosolique), et la production de VLP est fortement diminuée. Un mutant du NLS diminue également l'accrochage membranaire de M1 mais seulement de 10%. Ces domaines basiques, et plus particulièrement le triplet d'arginines, semblent donc être impliqués dans des interactions électrostatiques entre M1 et les lipides chargés de la membrane, ou M1 et les résidus chargés de la queue cytoplasmique de M2, ou les deux. L'ensemble de ces travaux apporte une nouvelle vision moléculaire de l'assemblage du virus de la grippe A/H1N1. / The M1 matrix protein, lying beneath the viral lipid envelop, plays many roles in influenza virus assembly. Not only it structures the viral particle but it also associates to the vRNP complexes in the nucleus and it supposedly binds to the cell plasma membrane and to the cytoplasmic tails of the viral membrane proteins at the assembly site. M1 N-terminal domain, composed of 164 amino acids, exhibits two basic domains: the NLS (Nuclear Localization Signal) on helix 6 and a triplet of arginines on helix 5. We decided to investigate the role of those basic domains regarding the molecular assembly mechanism of the influenza A/H1N1pdm2009 virus and the attachment of M1 at the cell membrane. In vitro, we observed that when the triplet of arginines is mutated, the percentage of M1 bound to LUVs (Large Unilamellar Vesicles) containing negatively charged lipids decreases, as it is the case for a full mutant of the NLS motif. In cellulo, by using cellular fractionation, membrane flotation assays, and immunofluorescence microscopy, we observed that when expressed alone, M1 is poorly bound to the cellular membranes whereas in the presence of NS1/NEP (Non Structural protein 1 and Nuclear Export Protein) and M2 viral proteins, the M1 membrane bound fraction is increased by 10 times. M2 appears to be essential for M1 membrane localization. In order to decipher the mechanism, we used directed site mutagenesis of M1 and M2. When we mutated some negatively charged residues of the M2 cytoplasmic tail, we no longer observed either the localization of M1 at the cell membrane or VLP (Virus Like Particles) production, in agreement with the literature. In addition, when we mutated the M1 arginine triplet, M1 remained cytosolic and VLP production was almost completely abolished, even when M2 and NS1/NEP were coexpressed. Whereas a mutant of the arginine triplet decreases by 20% the percentage of M1 attached to cellular membranes, a mutant of the NLS has a mild effect (10% of decrease is observed). Thus, M1 basic domains, particularly the arginine triplet, can trigger electrostatic interactions between M1 and the lipids, or M1 and the cytoplasmic tail of M2, or both, at the viral assembly site. These results highlight the molecular mechanism of A/H1N1 influenza virus assembly.
3

Atomic force microscopy study on the mechanics of influenza viruses and liposomes / Rasterkraftmikroskop Studie der Mechanik von Influenza-Viren und Liposomen

Li, Sai 20 November 2012 (has links)
Physik gibt es überall dort, wo Materie: Maßnahmen wie Energie, Masse, Temperatur, Geschwindigkeit, Größe und Steifigkeit sind alle Beispiele der physikalischen Eigenschaften. Solche Mengen sind wichtige Charakterisierungen für biologische Organismen: Sie verändern die ganze Zeit während des gesamten Lebenszyklus. Für eine Bio-Mechaniker, Steifigkeit ist eine wichtige Maßnahme zur biologischen Design zu verstehen. Weil biologische Bausteine so klein wie 1 nm (Protein / DNA / Lipid) sein können, sind spezielle Techniken erforderlich, um ihre Steifigkeit zu studieren. Beide Rasterkraftmikroskopie (AFM) und optischen Pinzetten können verwendet werden, um aktiv zu verformen die Objekte an pN-nN Kräfte und messen die Verformung auf Nanometer Längenskalen werden. In dieser Arbeit AFM wird angewandt, um die Mechanik von Influenza-Viren, Liposomen und lebenden Zellen zu studieren. Das Genom von Viren von einer Proteinhülle und in einigen Fällen eine zusätzliche Lipidhülle verpackt. Dieser Verbund Shell hat widersprüchliche Rollen: er hat das virale Genom zu schützen, aber es sollte auch ermöglichen Auspacken während der viralen Infektion in das Genom zu lösen. Influenza-Virus ist das weichste Virus jemals gefunden, aber zur gleichen Zeit eine sehr hartnäckige Virus verursacht jährliche Pandemien. Ein besseres Verständnis der mechanischen Eigenschaften des Influenza-Virus kann uns helfen zu verstehen, warum das Virus so erfolgreich ist. Die mechanischen Eigenschaften von Influenza-Viren wurden durch AFM gemessen und mit den Liposomen der viralen Lipid hergestellt. Wir haben gefunden, dass die Influenzavirus-Mechanik durch seine Lipidhülle (~ 70%) werden dominiert. In Kapitel 2 haben wir gezeigt, dass anstelle der Verwendung einer starren Proteinkapsid die Lipidhülle ausreicht, um das Influenza virale Genom zu schützen. In Kapitel 3 haben wir weitere blickte in die Funktion des M1 Proteinhülle während der viralen Infektion. Ein Zwischenprodukt Auspacken Schritt wurde durch Messen der in fluenzavirale Steifigkeit bei pH 7, 6, 5,5 und 5, Bedingungen, die die Ansäuerung Umgebungen auf der viralen Infektion nachahmen Stoffwechselweg entdeckt. Der Zwischenschritt wurde weiterhin als wesentlich erwiesen für eine erfolgreiche Infektion. Wir schlagen vor, dass das Influenza-Virus hat sich zu eng synchronisiert die verschiedenen Schritte ihrer Auspacken mit pH-

Page generated in 0.0359 seconds