• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous Video Quality of Experience Modelling using Machine Learning Model Trees

Chapala, Usha Kiran, Peteti, Sridhar January 1996 (has links)
Adaptive video streaming is perpetually influenced by unpredictable network conditions, whichcauses playback interruptions like stalling, rebuffering and video bit rate fluctuations. Thisleads to potential degradation of end-user Quality of Experience (QoE) and may make userchurn from the service. Video QoE modelling that precisely predicts the end users QoE underthese unstable conditions is taken into consideration quickly. The root cause analysis for thesedegradations is required for the service provider. These sudden changes in trend are not visiblefrom monitoring the data from the underlying network service. Thus, this is challenging toknow this change and model the instantaneous QoE. For this modelling continuous time, QoEratings are taken into consideration rather than the overall end QoE rating per video. To reducethe user risk of churning the network providers should give the best quality to the users. In this thesis, we proposed the QoE modelling to analyze the user reactions change over timeusing machine learning models. The machine learning models are used to predict the QoEratings and change patterns in ratings. We test the model on video Quality dataset availablepublicly which contains the user subjective QoE ratings for the network distortions. M5P modeltree algorithm is used for the prediction of user ratings over time. M5P model gives themathematical equations and leads to more insights by given equations. Results of the algorithmshow that model tree is a good approach for the prediction of the continuous QoE and to detectchange points of ratings. It is shown that to which extent these algorithms are used to estimatechanges. The analysis of model provides valuable insights by analyzing exponential transitionsbetween different level of predicted ratings. The outcome provided by the analysis explains theuser behavior when the quality decreases the user ratings decrease faster than the increase inquality with time. The earlier work on the exponential transitions of instantaneous QoE overtime is supported by the model tree to the user reaction to sudden changes such as video freezes.
2

Técnicas de aprendizado de máquina para predição do custo da logística de transporte : uma aplicação em empresa do segmento de autopeças /

Rodríguez, Elen Yanina Aguirre January 2020 (has links)
Orientador: Fernando Augusto Silva Marins / Resumo: Em diferentes aspectos da vida cotidiana, o ser humano é forçado a escolher entre várias opções, esse processo é conhecido como tomada de decisão. No nível do negócio, a tomada de decisões desempenha um papel muito importante, porque dessas decisões depende o sucesso ou o fracasso das organizações. No entanto, em muitos casos, tomar decisões erradas pode gerar grandes custos. Desta forma, alguns dos problemas de tomada de decisão que um gerente enfrenta comumente são, por exemplo, a decisão para determinar um preço, a decisão de comprar ou fabricar, em problemas de logística, problemas de armazenamento, etc. Por outro lado, a coleta de dados tornou-se uma vantagem competitiva, pois pode ser utilizada para análise e extração de resultados significativos por meio da aplicação de diversas técnicas, como estatística, simulação, matemática, econometria e técnicas atuais, como aprendizagem de máquina para a criação de modelos preditivos. Além disso, há evidências na literatura de que a criação de modelos com técnicas de aprendizagem de máquina têm um impacto positivo na indústria e em diferentes áreas de pesquisa. Nesse contexto, o presente trabalho propõe o desenvolvimento de um modelo preditivo para tomada de decisão, usando as técnicas supervisionadas de aprendizado de máquina, e combinando o modelo gerado com as restrições pertencentes ao processo de otimização. O objetivo da proposta é treinar um modelo matemático com dados históricos de um processo decisório e obter os predit... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre

Page generated in 0.0293 seconds