• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4521
  • 1912
  • 705
  • 507
  • 288
  • 156
  • 123
  • 76
  • 76
  • 76
  • 76
  • 76
  • 76
  • 67
  • 53
  • Tagged with
  • 10402
  • 4619
  • 2602
  • 1618
  • 1231
  • 979
  • 908
  • 818
  • 777
  • 669
  • 657
  • 622
  • 590
  • 579
  • 524
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Visualizing the cerebral microvasculature anatomical explorations into the resolution capabilities of 8 tesla magnetic resonance imaging /

Dashner, Roger A., January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xviii, 105 p.; also contains graphics (some col.). Includes abstract and vita. Advisor: David L. Clark, Dept. of Anatomy. Includes bibliographical references (p. 98-105).
232

Design and electrodynamic analysis of active magnetic bearing actuators

Pichot, Mark Allen. January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
233

Magnetic flux based transformer model /

Edwards, John. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2003. / Includes bibliographical references.
234

Local distortion effects near substituted paramagnetic ions /

Lau, Kit-fun. January 1981 (has links)
Thesis--M. Phil., University of Hong Kong, 1982.
235

Design of radiofrequency coils for magnetic resonance imaging applications a computational electromagnetic approach /

Ibrahim, Tamer S., January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xxx, 268 p.: ill. Includes abstract and vita. Advisor: Robert Lee, Dept. of Electrical Engineering. Includes bibliographical references (p. 256-268).
236

Structure of the [beta] subunit of translation initiation factor 2 from the Archaeon Methanococcus jannaschii by NMR a representative of the eIF2[beta]/eIF5 family of proteins /

Cho, Seongeun. January 2002 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Vita. Includes bibliographical references. Available also from UMI Company.
237

Drift wave stability and transport in tandem mirrors

Pratt, Jane Lillian 16 October 2012 (has links)
In recent years experimental advances at the GAMMA-10 facility in Tsukuba, Japan have shown that tandem mirrors should remain an important subject for theoretical study. The absence of toroidal curvature and relatively weak internal plasma parallel currents in a tandem mirror gives the mirror system strongly favorable stability and transport properties compared with toroidal systems. GAMMA-10 experiments (T. Cho et al. PRL (97), 2006) demonstrate that sheared plasma rotation suppresses turbulent radial losses by controlling radial potential profiles. Achievements of the GAMMA-10 include 2.5 keV ion confining potentials and electron temperatures approaching 1 keV (T. Cho, Private correspondence, Dec 24th, 2006). Total energy confinement times for the GAMMA-10 experiment are significantly larger than corresponding empirical confinement times in toroidal devices. At the temperatures currently achieved in the GAMMA-10, the end loss rate [mathematical symbols] 100 ms so that radial losses determine the energy confinement time [mathematical symbol], as intended in tandem mirror reactor designs (R. F. Post, T.K. Fowler, et al., Fusion Science and Technology, (47), 2005). The most current measurements of [mathematical symbol] are on the order of 72 ms. Tandem mirrors exhibit a qualitatively different type of drift wave transport than do toroidal devices, as we have shown by developing confinement time scaling predictions (J. Pratt and W. Horton, Phys. Plasmas (13), 2006. W. Horton, J. Pratt, H.L. Berk, M. Hirata. Proceedings of the Open Magnetic Systems For Plasma Confinement Conference. Tsukuba, Japan, July 17-21, 2006). These predictions use a variety of standard transport models, e.g., Bohm, gyro-Bohm, and electron-temperature gradient models. We analyze electrostatic drift wave eigenmodes for the electrostatic potential and the magnetic perturbation in the GAMMA-10. We use teraFLOPS speed, large scale parallel computers to integrate the orbits in models of the drift wave losses in the GAMMA-10. We extrapolate these results to reactor designs for the kinetically stabilized tandem mirror reactor proposed by Post et al., and discuss implications for its stability, transport, and performance. / text
238

The Design and Control of Stability and Magnetic Properties of Imaging Nanoparticles

Yoon, Ki Youl 05 February 2013 (has links)
There is significant interest in applying nanoparticle (NP) science to subsurface reservoirs to facilitate oil and gas recovery, image subsurface reservoirs, aid sequestration of CO2 and benefit environmental remediation. Imaging nanoparticles have been designed with long-term dispersion stability in brine and minimal retention in reservoir rock and with preferential adsorption at oil-water interfaces. Polymer-stabilized nanoparticles provide sufficient electrostatic repulsion for high colloidal stability, as characterized by the zeta potential. The small size of the clusters, superparamagnetic properties, and high salt tolerance are highly beneficial in various applications including magnetomotive and electromagnetic imaging and mapping of petroleum reservoirs. Superparamagnetic nanoclusters may be used in imaging in biomedicine and in mapping of petroleum reservoirs, by generating either ultrasonic or acoustic signals with oscillating magnetic motion. For a given magnetization per weight of iron oxide, nanoclusters with sub ~100 nm diameters experience a much larger magnetic force than that of the primary sub- 10 nm primary particles. Aqueous dispersions of 0.1-0.2 wt% superparamagnetic iron oxide nanoclusters were stabilized with citric acid, poly(acrylic acid) (PAA), or poly(styrene sulfonate-alt-maleic acid) (PSS-alt-MA) on the particle surface, with a high loading of ~90% iron oxide. For nanoclusters with only 12% (w/w) PSS-alt-MA electrosteric stabilization was sufficient even in 8 wt% NaCl. Both PAA and PSS-alt-MA were used to stabilize nanoclusters with controlled size during synthesis in aqueous media. To obtain a permanent coating on the surface of clusters cross-linking of the polymer for different cross-linking densities was applied. In this general and highly flexible approach, iron oxide nanoparticles may be formed with an adsorbed polymer stabilizer, which is then permanently bound to the surface via cross-linking. To investigate interfacial activity of nanoparticles, oil-in-water emulsions were stabilized with iron oxide nanoclusters or graphene oxide platelets. In each case, the stabilization was achieved by designing the hydrophilic/hydrophobic nature of surface coating. For oil/water emulsions, the droplet size was as low as ~1 micron diameter, and strongly shear-thinning rheology was observed. A series of sub-100 nm superparamagnetic iron oxide nanoparticles with amphiphilic poly(acrylic acid-b-butylacrylate), (PAA-b-PBA) copolymer shells was synthesized to investigate the effect of the polymer structure on the interfacial tension for nanoparticles adsorbed at the dodecane-water interface. Large reductions in interfacial tension of up to 27.6 mN/m were obtained for a 0.27 wt% nanoparticle concentration indicating significant nanoparticle adsorption and interaction with the oil and water molecules at the interface. The adsorption energy of the polymer-coated nanoparticles at the dodecane/water interface was determined from the interfacial tension and nanoparticle radius, and analyzed in terms of the structure of the polymer stabilizer. Furthermore, oil-in-water emulsions stabilized with graphene oxide nanoplatelets were found to remain stable for several months even at high salinity (up to 5 wt% NaCl, for pH = 2 to 10). The droplet sizes were as small as ~1 μm with a low nanoplatelet concentration of 0.2 wt%. / text
239

Design, analysis and application of coaxial magnetic gears

Jian, Linni., 蹇林旎. January 2010 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
240

Cellular, molecular and metabolic magnetic resonance imaging: techniques and applications

Chow, Mei-kwan, April., 周美君. January 2010 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy

Page generated in 0.2704 seconds