• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 450
  • 105
  • 39
  • 31
  • 28
  • 26
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 2
  • Tagged with
  • 773
  • 245
  • 142
  • 128
  • 124
  • 106
  • 105
  • 99
  • 71
  • 60
  • 54
  • 54
  • 52
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Automorphism of bounded domains and biholomorphic mappings on strictlypseudoconvex domains

廖劍峰, Liu, Kim-fung. January 2001 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
342

Asymptotic curvature properties of moduli spaces for Calabi-Yau threefolds

Trenner, Thomas January 2011 (has links)
No description available.
343

Invariant gauge fields over non-reductive spaces and contact geometry of hyperbolic equations of generic type

The, Dennis. January 2008 (has links)
In this thesis, we study two problems focusing on the interplay between geometric properties of differential equations and their invariants. / For the first project, we study the validity of the principle of symmetric criticality (PSC) in the context of invariant gauge fields over the four-dimensional non-reductive pseudo-Riemannian homogeneous spaces G/K recently classified by Fels & Renner (2006). Given H compact semi-simple, classification results are obtained for principal H-bundles over G/K admitting: (1) a G-action (by bundle automorphisms) projecting to left multiplication on the base, and (2) at least one G-invariant connection. There are two cases which admit nontrivial examples of such bundles and all G-invariant connections on these bundles are Yang--Mills. Using the invariant criteria obtained by Anderson--Fels--Torre, the validity of PSC is investigated for the bundle of connections and is shown to fail for all but one of the Fels--Renner cases. This failure arises from degeneracy of the scalar product on pseudo-tensorial forms restricted to the space of symmetric variations of an invariant connection. In the exceptional case where PSC is valid, there is a unique G-invariant connection which is moreover universal, i.e. it is a solution of the Euler--Lagrange equations associated to any G-invariant Lagrangian on the bundle of connections. This solution is a canonical connection associated with a weaker notion of reductivity which we introduce. / The second project is a study of the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge--Ampere (class 6-6), Goursat (class 6-7) and generic (class 7-7) hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric equations are derived and explicit symmetry algebras are presented. Moreover, all such equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional) structures is also given.
344

Loop algebras and algebraic geometry

Miscione, Steven. January 2008 (has links)
This thesis primarily discusses the results of two papers, [Hu] and [HaHu]. The first is an overview of algebraic-geometric techniques for integrable systems in which the AKS theorem is proven. Under certain conditions, this theorem asserts the commutatvity and (potential) non-triviality of the Hamiltonian flow of Ad*-invariant functions once they're restricted to subalgebras. This theorem is applied to the case of coadjoint orbits on loop algebras, identifying the flow with a spectral curve and a line bundle via the Lax equation. These results play an important role in the discussion of [HaHu], wherein we consider three levels of spaces, each possessing a linear family of Poisson spaces. It is shown that there exist Poisson mappings between these levels. We consider the two cases where the underlying Riemann surface is an elliptic curve, as well as its degeneration to a Riemann sphere with two points identified (the trigonometric case). Background in necessary areas is provided.
345

A rapid method for approximating invariant manifolds of differential equations

Tang, Shouchun (Terry), University of Lethbridge. Faculty of Arts and Science January 2006 (has links)
The Intrinsic Low-Dimensional Manifold (ILDM) has been adopted as an approximation to the slow manifold representing the long-term evolution of a non-linear chemical system. The computation of the slow manifold simplifies the model without sacrificing accuracy because the trajectories are rapidly attracted to it. The ILDM has been shown to be a highly accurate approximation to the manifold when the curvature of the manifold is not too large. An efficient method of calculating an approximation to the slow manifold which may be equivalent to the ILDM is presented. This method, called Functional Equation Truncation (FET). is based on the assumption that the local curvature of the manifold is negligible, resulting in a locally linearized system. This system takes the form of a set of algebraic equations which can be solved for given values of the independent variables. Two-dimensional and three-dimensional models are used to test this method. The approximations to onedimensional slow manifolds computed by FET are quite close to the corresponding ILDMs and those for two-dimensional ones seem to differ from their ILDM counterparts. / vii, 61 leaves ; 29 cm.
346

Local imbedding of hypersurfaces in an affine space.

De Arazoza, Hector January 1972 (has links)
No description available.
347

The Einstein Field Equations : on semi-Riemannian manifolds, and the Schwarzschild solution

Leijon, Rasmus January 2012 (has links)
Semi-Riemannian manifolds is a subject popular in physics, with applications particularly to modern gravitational theory and electrodynamics. Semi-Riemannian geometry is a branch of differential geometry, similar to Riemannian geometry. In fact, Riemannian geometry is a special case of semi-Riemannian geometry where the scalar product of nonzero vectors is only allowed to be positive. This essay approaches the subject from a mathematical perspective, proving some of the main theorems of semi-Riemannian geometry such as the existence and uniqueness of the covariant derivative of Levi-Civita connection, and some properties of the curvature tensor. Finally, this essay aims to deal with the physical applications of semi-Riemannian geometry. In it, two key theorems are proven - the equivalenceof the Einstein field equations, the foundation of modern gravitational physics, and the Schwarzschild solution to the Einstein field equations. Examples of applications of these theorems are presented.
348

On the geometry of calibrated manifolds : with applications to electrodynamics / Kalibrerade mångfalders geometri : med tillämpningar inom elektrodynamik

Leijon, Rasmus January 2013 (has links)
In this master thesis we study calibrated geometries, a family of Riemannian or Hermitian manifolds with an associated differential form, φ. We show that it isuseful to introduce the concept of proper calibrated manifolds, which are in asense calibrated manifolds where the geometry is derived from the calibration. In particular, the φ-Grassmannian is considered in the case of proper calibratedmanifolds. The impact of proper calibrated manifolds as a model is studied, aswell as the usefulness of pluripotential theory as tools for the model. The specialLagrangian calibration is an example of an important calibration introduced byHarvey and Lawson, which leads to the definition of the special Lagrangian differentialequation. This partial differential equation can be formulated in threeand four dimensions as det(H(u)) = Δu, where H(u) is the Hessian matrix of some potential u. We prove the existence of solutions and some other propertiesof this nonlinear differential equation and present the resulting 6- and 8-dimensional manifolds defined by the graph {x + i<img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cnabla" />u(x)}. We also considerthe physical applications of calibrated geometry, which have so far largely beenrestricted to string theory. However, we consider the manifold (M,g,F), whichis calibrated by the scaled Maxwell 2-form. Some geometrical properties of relativisticand classical electrodynamics are translated into calibrated geometry.
349

Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds

Smith, Kathleen 14 January 2014 (has links)
In the early 1980s a landmark result was obtained by Atiyah and independently Guillemin and Sternberg: the image of the momentum map for a torus action on a compact symplectic manifold is a convex polyhedron. Atiyah's proof makes use of the fact that level sets of the momentum map are connected. These proofs work in the setting of finite-dimensional compact symplectic manifolds. One can ask how these results generalize. A well-known example of an infinite-dimensional symplectic manifold with a finite-dimensional torus action is the based loop group. Atiyah and Pressley proved convexity for this example, but not connectedness of level sets. A proof of connectedness of level sets for the based loop group was provided by Harada, Holm, Jeffrey and Mare in 2006. In this thesis we study Hilbert manifolds equipped with a strong symplectic structure and a finite-dimensional group action preserving the strong symplectic structure. We prove connectedness of regular generic level sets of the momentum map. We use this to prove convexity of the image of the momentum map.
350

Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds

Smith, Kathleen 14 January 2014 (has links)
In the early 1980s a landmark result was obtained by Atiyah and independently Guillemin and Sternberg: the image of the momentum map for a torus action on a compact symplectic manifold is a convex polyhedron. Atiyah's proof makes use of the fact that level sets of the momentum map are connected. These proofs work in the setting of finite-dimensional compact symplectic manifolds. One can ask how these results generalize. A well-known example of an infinite-dimensional symplectic manifold with a finite-dimensional torus action is the based loop group. Atiyah and Pressley proved convexity for this example, but not connectedness of level sets. A proof of connectedness of level sets for the based loop group was provided by Harada, Holm, Jeffrey and Mare in 2006. In this thesis we study Hilbert manifolds equipped with a strong symplectic structure and a finite-dimensional group action preserving the strong symplectic structure. We prove connectedness of regular generic level sets of the momentum map. We use this to prove convexity of the image of the momentum map.

Page generated in 0.0271 seconds