• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 15
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proteomic and anatomical characterisation of Drosophila MAGUK-associated signalling complexes

Malik, Bilal Rashid January 2013 (has links)
Understanding the molecular composition of the synapse is one of the ongoing problems in neuroscience. The synaptic proteome consists of about 1100 proteins, most of which are organised into complexes. Understanding the composition and function of these complexes is important for understanding the mechanisms and pathways of diseases which these protein complexes are involved in determining the sub-cellular localisation of these proteins and also their spatial distribution in the nervous system may lead to important insights into the function of such protein complexes thus furthering our understanding of the function and diseases of the nervous system. Neuro-proteomics has led to identification of an NMDA receptor complex (also called MAGUK-associated signalling complex (MASC)) which has been extensively studied in mouse. It consists of ~186 proteins in mouse and represents 10 different functional classes of proteins. Drosophila offers an opportunity to study this complex in more detail because it is 50% less complex while still maintaining all the functional classes of proteins. Since the fundamental structure and principles of neuronal function are conserved between vertebrates and Drosophila the physiology and molecular biology of disease can be better resolved in this simple organism. Here I present an effort to characterise the MASC complex in Drosophila and present the molecular composition of the MASC complex in Drosophila. I will present an anatomical map of the complex in the fly brain and also show that there is significantly high conservation of this complex between Drosophila and mouse. Two different approaches have been used in this thesis to study the molecular composition of this complex give results which are in partial agreement with each other. Importantly it provides an evaluation of these two methods and indicates that they can be used to study molecular complexes in Drosophila.
2

Colloidal Processing, Microstructural Evolution, and Anisotropic Properties of Textured Ultra-High Temperature Ceramics Prepared Using Weak Magnetic Fields

Shiraishi, Juan Diego 09 February 2024 (has links)
The texturing of ultra-high temperature ceramics (UHTCs) using weak magnetic fields is studied and developed for the first time. Textured UHTCs were prepared by magnetically assisted slip casting (MASC) in weak magnetic field (B ~ 0.5 T). Analytical calculations describing the balance of torques acting on the suspended particles suggested that texture would form at such low magnetic fields. The calculations include a novel contribution of Stokes drag arising from the inhomogeneous velocity profile of the fluid during slip casting. Experimental proof-of-concept of the theoretical calculations was successfully demonstrated. Calculations of Lotgering orientation factor (LOF) based on the intensities of the (00l) family of peaks measures by XRD revealed strong c-axis crystalline texture in TiB2 (LOF = 0.88) and ZrB2 (LOF = 0.79) along the direction of the magnetic field. Less texture was achieved in HfB2 (LOF = 0.39). In all cases, the density of the textured materials was less than that of control untextured materials, indicating that texturing hindered the densification. The findings from this work confirm the potential for more cost-effective, simple, and flexible processes to develop crystalline texture in UHTCs and other advanced ceramics and give new insight into the mechanisms of magnetic alignment of UHTCs under low magnetic fields. The microstructural evolution during slip casting and pressureless sintering is investigated. The interplay between magnetic alignment and particle packing was investigated using XRD and SEM. During MASC, the suspended particles rotate into their aligned configuration. Particles that deposit at the bottom of the mold near the plaster of Paris substrate have their alignment slightly disrupted over a ~220 μm-thick region. The aligned suspended particles lock into an aligned configuration as they consolidate, leading to a uniform degree of texturing across the entire sample height of several millimeters upon full consolidation of the particle network. If the magnetic field is removed before the particles fully consolidate, the suspended particles re-randomize their orientation. Grain size measurements done using the ASTM E112 line counting method on SEM images revealed anisotropic microstructures in green and sintered textured ZrB2 materials. Smaller effective grain sizes were observed in the direction of c-axis texture than the directions perpendicular to the texture. Grain aspect ratios of 1.20 and 1.13 were observed in materials where the c-axis texture directions were parallel (PAR) and perpendicular (PERP) to the slip casting direction, respectively. Constraint of the preferred a-axis grain growth direction in the textured materials inhibited their densification compared to the untextured material. The PERP material with the preferred grain growth direction constrained along the casting direction had smaller average grain sizes than the PAR material which contained the preferred grain growth directions in the circular plane normal to the casting direction. Compression testing suggests a trend towards higher strength and stiffness in materials with higher density. Classical catastrophic brittle failure was observed in the untextured materials, but in the textured materials some samples exhibited a multiple failure mode. The PERP material tended to exhibit superior strength and stiffness to the PAR material in the classical brittle failure mode due to the orientation of the stiffer a-axis along the loading direction and smaller average grain size in the plane normal to the loading direction in the PERP condition. In the multiple failure mode, the PAR material tended to reach higher strength values after the initial failure and reach slightly higher strains before ultimate failure due to the orientation of the compliant c-axis along the loading direction and ability of the grains elongated in the plane normal to the loading direction to rearrange themselves after initial failure(s). Regardless of density or texture condition, all ZrB2 samples survived thermal shock resistance (TSR) testing. Samples were heated to 1500°C in air, held for 30 minutes, then quenched in room temperature air. After TSR testing, oxide layers formed on the surface of the materials. The specific mass gain and oxide layer thickness tended to increase with increasing porosity and were dramatically increased when open porosity was dominant as in the CTRL 1900 condition. After TSR testing, the compressive strength and strain at failure were both higher compared to the as-sintered materials. The increases in the average compressive strength were 20%, 76%, and 57% in the CTRL, PAR, and PERP conditions, respectively. The combination of the presence of the oxide layer shifting the onset of macroscale damage to higher strain values, the dissipation of load in the more porous region near the oxide layer, and the constraining effect of the oxide layer acting against the expansion of the material contributed to reinforcement of the samples after TSR testing. The CTRL material outperformed the textured materials on average in terms of strength and stiffness due to the higher density. The results suggest that reinforcement was more effective in the PAR condition than the PERP, which may be caused by the formation of a homogenous oxide layer on the PAR while the PERP formed an anisotropic layer. The work presented in this dissertation lays the foundation for affordable, energy efficient preparation of UHTCs and other ceramic materials. Equipment costs are reduced by 3 orders of magnitude, and the operating costs and energy consumption are greatly reduced. Facilitation of the preparation of textured materials opens the door to renewed investigations into their processing and performance. This work describes in detail for the first time the relationships between processing, microstructure, and properties of a textured UHTC part, providing a model for future research. Finally, the findings in this work can be used to guide process optimization, exploration of complex shapes and microstructures, and design of manufacturing schemes to create specialty textured parts for demanding structural and functional applications. / Doctor of Philosophy / Textured ultra-high temperature ceramics (UHTCs), special materials with melting temperatures above 3000°C and potential for use in thermal protection of Mach 5+ aircraft and spacecraft, were prepared by magnetically assisted slip casting (MASC) in a weak magnetic field for the first time. The magnetic field was supplied by commercially available permanent magnets which was applied to a liquid-like slurry with UHTC particles floating in it to orient the UHTC particles with their c-crystal axis along the magnetic field direction. Calculations which described the balance of rotational forces acting to align or misalign the suspended particles suggested that the UHTC particles would align in the weak magnetic field. This prediction was realized. After the liquid in the slurry was removed during MASC to leave behind an aligned particle network, the samples were densified by heating in the absence of air to 2100°C for one hour. In titanium diboride (TiB2) and zirconium diboride (ZrB2), two of the most relevant UHTC materials, strong texture was achieved; 88% and 79% of the crystals in the material were aligned along the original magnetic field direction. This is the first time that this has been reported in the scientific literature. In hafnium diboride (HfB2), only 39% of the grains were aligned. The textured materials all had lower density than the untextured materials prepared alongside them using conventional slip casting. The relationship between magnetic alignment and particle packing was investigated by observing the microstructure. During MASC, the suspended particles rotate into their aligned configuration. Particles that deposit at the bottom of the mold near the plaster of Paris substrate have their alignment slightly disrupted over a ~220 μm-thick region. The aligned suspended particles lock into an aligned configuration as they consolidate, leading to a uniform degree of texturing over across the entire sample height of several millimeters upon full consolidation of the particle network. If the magnetic field is removed before the particles fully consolidate, the suspended particles re-randomize their orientation. The findings from this work confirm the potential for more cost-effective, simple, and flexible processes to develop crystalline texture in UHTCs and other advanced ceramics and give new insight into the mechanisms of magnetic alignment of UHTCs under low magnetic fields. Because of the magnetic alignment of the particles, it is expected that the microstructure would show some difference along and across the direction that the alignment formed along the applied magnetic field. In order to determine that, the size of the grains (particles joined to each other during densification) in the materials are measured along different directions in the sample chosen for their orientational relationship to the magnetic field and casting directions. Smaller effective grain sizes were observed along the direction of magnetically aligned crystalline texture than the directions perpendicular to the texture. Because of how the crystal axes of the particles are aligned, there are differences in how the particles join each other during densification, and that results in an anisotropic microstructure where different grain sizes as a function of the magnetic field direction and the texture direction. Compression testing conducted by squeezing the samples at a fixed rate suggests a trend that indicates the samples are stronger and stiffer when the density is higher, as expected. Untextured samples abruptly failed after reaching their maximum strength value in a manner typical of brittle ceramics. Some textured samples failed in this way, but some failed at low strength values then climbed back up in strength repeatedly until they eventually gave out completely, in a crumbly mode. In the classical brittle failure mode, the PERP material with c-axis texture aligned along the sample diameter, perpendicular to the loading direction, tended to exhibit superior strength and stiffness to the PAR material with c-axis texture oriented along the height and loading directions of the sample because the stiffer crystal axis was oriented along the loading direction and the average grain size seen by the load head was smaller. In the crumbly mode, the PAR material tended to reach higher strength values after initial failure and ultimately fail later in a crumblier mode because the more compliant crystal axis was oriented along the loading direction and the grains elongated in the plane perpendicular to the loading direction could rearrange themselves better after initial failure(s) to bear more load. Regardless of density or texture condition, all ZrB2 samples survived thermal shock resistance (TSR) testing, meaning that the samples remained fully intact after experiencing a big difference in temperature in very short time. Samples were heated in a furnace to 1500°C in air, held for 30 minutes, removed from the furnace, and cooled in air. After TSR testing, the samples developed an oxide layer on the outside, in a similar manner to rust forming on a piece of metal. How much it oxidized per unit area and how thick that oxide layer was increased with increasing porosity. These quantities increased dramatically when the pores connected the interior of the sample to the outside, as in the CTRL 1900 condition. After TSR testing, the samples were stronger by 20%, 76%, and 57% in the CTRL, PAR, and PERP conditions, respectively, indicating that the oxide layer was responsible for an enhancement in strength. The results suggest that increase of strength of the oxide layer was more effective in the PAR condition than the PERP, which is believed to be caused by the formation of a homogenous oxide layer on the PAR while the PERP formed an anisotropic layer. The work presented in this dissertation reduces the start-up equipment costs associated with magnetic alignment processes by 1000 times and lays the foundation for affordable, energy efficient preparation of UHTCs and other ceramic materials. The simplicity of this technique makes it easier for future researchers to study textured materials. This work describes in detail for the first time the relationships between processing, microstructure, and properties of a textured UHTC part, providing a model for future research. Finally, the findings in this work can be used to guide process optimization, exploration of complex shapes and microstructures, and design of manufacturing schemes to create specialty textured parts for demanding applications.
3

Flexible service choreography

Barker, Adam January 2007 (has links)
Service-oriented architectures are a popular architectural paradigm for building software applications from a number of loosely coupled, distributed services. Through a set of procedural rules, workflow technologies define how groups of services coordinate with one another to achieve a shared task. A problem with workflow specifications is that often the patterns of interaction between the distributed services are too complicated to predict and analyse at design-time. In certain cases, the exact patterns of message exchange and the concrete services to call cannot be predicted in advance, due to factors such as fluctuating network load or the availability of services. It is a more realistic assumption to endow software components with the ability to make decisions about the nature and scope of their interactions at runtime. Multiagent systems offer a complementary paradigm: building software applications from a number of self interested, autonomous agents. This thesis presents an investigation into fusing the agency and service-oriented architecture paradigms, in order to facilitate flexible, workflow composition. Our approach offers an agent-based solution to service choreography and is founded on the concept of shared interaction protocols. By adopting an agent-based approach to service choreography, active autonomous agents can utilise the typically passive service-oriented architectures, found in Internet and Grid systems. In contrast with statically defined, centralised service orchestrations, decentralised agents can perform service choreography at runtime, allowing them to operate in scenarios where it is not possible to define the pattern of interaction in advance. Application to real scenarios is a driving factor behind this research. By working closely with a number of active Grid projects, namely AstroGrid and the Large-Synoptic Survey Telescope (LSST), a concrete set of requirements for scientific workflow have been derived, based on realistic science problems. This research has resulted in the MultiAgent Service Choreography (MASC) language to express scientific workflow, methodology for system building and a software framework which performs agent based Web service choreography, in order to enact distributed e-Science experiments. Evaluation of this thesis is conducted through case study, applying the language, methodology and software framework to solve a motivating set of workflow scenarios.
4

Policy-driven framework for manageable and adaptive service-oriented processes

Erradi, Abdelkarim, Computer Science & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Dynamic selection and composition of autonomous and loosely-coupled Web services is increasingly used to automate business processes. The typical long-running characteristic of business processes imposes new management challenges such as dynamic adaptation of running process instances. However, current process orchestration engines provide limited flexibility to dynamically adapt to changing runtime conditions (e.g., presence of faults). Additionally, current process specification languages exhibit some limitations regarding modularity of crosscutting management concerns. In particular, monitoring and adaptation logic is often scattered across several process definitions and intertwined with the business logic. This leads to monolithic and complex processes that are hard to understand, reuse, maintain, and evolve. To address these limitations, we developed a policy-based change management framework, named Manageable and Adaptable Service Compositions (MASC), to declaratively express crosscutting monitoring and process adaptation concerns in a separate and modular way. MASC policies use a set of simple, but flexible and relatively powerful, constructs to declaratively specify policies that govern: (1) discovery and selection of services to be used, (2) monitoring to detect the need for adaptation, (3) reconfiguration and adaptation of the process to handle special cases (e.g., context-dependant behaviour) and recover from typical faults in service-based processes. The identified constructs are executed by a lightweight service-oriented management middleware named MASC middleware. The adaptation is transparent because it preserves the original functional behaviour of the business process and does not tangle the adaptation logic with that of the business process. Additionally, policies do not have to be necessarily defined when designing the process; they can also be introduced later during deployment or at runtime. We implemented a MASC proof-of-concept prototype and evaluated it on Stock Trading case study scenarios. We conducted extensive studies to demonstrate the feasibility of the proposed techniques and illustrate the benefits of our approach in providing adaptive composite services using the policy-based approach. Our performance and scalability studies indicate that MASC middleware is scalable and the introduced overhead are acceptable.
5

Parent stress and child anxiety in a community mental health center

James, Sarah E. 10 October 2012 (has links)
The primary focus of this study was to examine the relationship between parent stress and child anxiety. In addition, differences in child anxiety by gender and ethnicity were explored. Finally, data were evaluated to determine differences in types of anxiety symptoms reported by children. Participants were 34 parent-child dyads from Morrison Child and Family Services in Portland, Oregon. Children (20 females, 14 males) ranged in age from 8 years to 12 years. The parent group (30 females, 4 males) included only biological parents or legal guardians, with 23 parents reporting a single-caregiver home. Results were not significant for correlations between parent stress or parent life stress and child anxiety or for differences in child anxiety by gender or ethnicity. Results did indicate that on the MASC, children reported significantly higher scores on the Harm Avoidance scale than any other index. Limitations and future directions are discussed. / text
6

Policy-driven framework for manageable and adaptive service-oriented processes

Erradi, Abdelkarim, Computer Science & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Dynamic selection and composition of autonomous and loosely-coupled Web services is increasingly used to automate business processes. The typical long-running characteristic of business processes imposes new management challenges such as dynamic adaptation of running process instances. However, current process orchestration engines provide limited flexibility to dynamically adapt to changing runtime conditions (e.g., presence of faults). Additionally, current process specification languages exhibit some limitations regarding modularity of crosscutting management concerns. In particular, monitoring and adaptation logic is often scattered across several process definitions and intertwined with the business logic. This leads to monolithic and complex processes that are hard to understand, reuse, maintain, and evolve. To address these limitations, we developed a policy-based change management framework, named Manageable and Adaptable Service Compositions (MASC), to declaratively express crosscutting monitoring and process adaptation concerns in a separate and modular way. MASC policies use a set of simple, but flexible and relatively powerful, constructs to declaratively specify policies that govern: (1) discovery and selection of services to be used, (2) monitoring to detect the need for adaptation, (3) reconfiguration and adaptation of the process to handle special cases (e.g., context-dependant behaviour) and recover from typical faults in service-based processes. The identified constructs are executed by a lightweight service-oriented management middleware named MASC middleware. The adaptation is transparent because it preserves the original functional behaviour of the business process and does not tangle the adaptation logic with that of the business process. Additionally, policies do not have to be necessarily defined when designing the process; they can also be introduced later during deployment or at runtime. We implemented a MASC proof-of-concept prototype and evaluated it on Stock Trading case study scenarios. We conducted extensive studies to demonstrate the feasibility of the proposed techniques and illustrate the benefits of our approach in providing adaptive composite services using the policy-based approach. Our performance and scalability studies indicate that MASC middleware is scalable and the introduced overhead are acceptable.
7

Computational Methods for the Analysis of Non-Contact Creep Deformation

Ye, Xiao 01 January 2012 (has links) (PDF)
Currently, various needs from industry, science and national defense strategy demand materials with cutting-edge ultra-high temperature performances. Typical applications of ultra-high temperature materials (UHTMs) are supersonic airplanes, gas turbines and rocket nozzles which usually require continuous service of critical components at temperatures higher than 1600°C. Creep resistance is a critical criterion in designing materials for these applications. Traditional creep characterization methods, however, due to limitations on cost, accuracy and most importantly temperature capability, gradually emerge as a bottleneck. Since 2004, a group of researchers in the University of Massachusetts, Amherst have been designing a new high temperature characterization scheme that can break through the limits of traditional methods. Their method is based on non-contact creep tests conducted with Electrostatic levitation (ESL) facilities in NASA Marshall Space Flight Center in Huntsville Alabama. The tested sample is levitated in electric field and is heated as well as rotated with specially positioned laser beam. After certain amount of time, the sample deforms under centripetal forces. By comparison of the shape of the deformed sample with results from finite element simulation, creep behavior of the tested material can be characterized. Based on the same theory, this thesis presents a computational creep characterization method based on non-contact method. A finite element model was built to simulate non-contact creep behavior and results were compared to ESL experiments to determine the creep characteristic. This method was validated both theoretically and numerically and then applied to creep characterization of a promising ultra-high temperature composite from General electric (GE).
8

Comparative Power Capture of Unmoored Floating Offshore Wind Turbines and Energy Ships

Connolly, Patrick 23 August 2022 (has links)
Given the bleak current and projected global climate trends, society is transitioning the energy systems that we rely upon away from fossil fuel based systems to reduce global CO2 emissions. There are now well-established technologies for providing renewable electricity at utility scales, such as wind turbines and solar panels, being deployed at an ever increasing pace. However, solutions for decarbonizing other sectors where fossil fuels are harder to replace are still needed. Current strategies for reducing fossil fuel use in these sectors rely on replacing them with synthetic fuels instead are produced using renewable electricity, and can therefore be part of a net-zero emissions cycle. The focus of this thesis is to examine a novel class of wind energy systems suitable for powering these fuel synthesis processes. Alternative applications of the proposed systems include powering direct air CO2 capture systems to support negative emissions technology efforts. This work develops and presents numerical models for concepts hereafter referred to as mobile offshore wind energy systems (MOWESs). A MOWES is a wind energy system that operates offshore and is not intended to remain stationary during operation. MOWESs would operate far from shore, harnessing a part of the wind resource that would not otherwise be usable. No full- or large-scale MOWES has yet been developed, and there is little work on developing these concepts, even within academia. Steady-state power performance models of two MOWES concepts, namely unmoored floating offshore wind turbines and energy ships, are developed to support further research in this field. Model results suggest that each concept has unique pros and cons and no conclusion can be drawn as to which technology is more effiient overall. A key conclusion of this work is that unmoored floating wind turbines can generate more power by sailing at a constant speed rather than holding station. We also conclude that unmoored floating wind turbines designed for downwind operation can produce as much power as conventional stationary wind turbines given sufficiently high wind speeds. Further work must examine whether the advantages of these technologies are exploitable given realistic wind conditions and when considering the complicated dynamics of the system. / Graduate / 2023-08-09
9

Design and Implementation of an FPGA-Based Scalable Pipelined Associative SIMD Processor Array with Specialized Variations for Sequence Comparison and MSIMD Operation

Wang, Hong 21 November 2006 (has links)
No description available.
10

Effects of age on behavioural and eye gaze on Theory of Mind using Movie for Social Cognition

Yong, Min Hooi, Waqas, Muhammad, Ruffman, T. 22 January 2024 (has links)
Yes / Evidence has shown that older adults have lower accuracy in Theory-of-Mind (ToM) tasks compared to young adults, but we are still unclear whether the difficulty in decoding mental states in older adults stems from not looking at the critical areas, and more so from the ageing Asian population. Most ToM studies use static images or short vignettes to measure ToM but these stimuli are dissimilar to everyday social interactions. We investigated this question using a dynamic task that measured both accuracy and error types, and examined the links between accuracy and error types to eye gaze fixation at critical areas (e.g. eyes, mouth, body). A total of 82 participants (38 older, 44 young adults) completed the Movie for the Assessment of Social Cognition task on the eye tracker. Results showed that older adults had a lower overall accuracy with more errors in the ipo-ToM (under-mentalising) and no-ToM (lack of mentalisation) conditions compared to young adults. We analysed the eye gaze data using principal components analysis and found that increasing age and looking less at the face were related to lower MASC accuracy in our participants. Our findings suggest that ageing deficits in ToM are linked to a visual attention deficit specific to the perception of socially relevant nonverbal cues. / This study was funded by the Ministry of Higher Education Malaysia (FRGS/1/2016/SS05/SYUC/03/2) awarded to M.H.Y.

Page generated in 0.0151 seconds