61 |
Temporal Graph Record Linkage and k-Safe Approximate MatchJupin, Joseph January 2016 (has links)
Since the advent of electronic data processing, organizations have accrued vast amounts of data contained in multiple databases with no reliable global unique identifier. These databases were developed by different departments for different purposes at different times. Organizing and analyzing these data for human services requires linking records from all sources. RL (Record Linkage) is a process that connects records that are related to the identical or a sufficiently similar entity from multiple heterogeneous databases. RL is a data and compute intensive, mission critical process. The process must be efficient enough to process big data and effective enough to provide accurate matches. We have evaluated an RL system that is currently in use by a local health and human services department. We found that they were using the typical approach that was offered by Fellegi and Sunter with tuple-by-tuple processing, using the Soundex as the primary approximate string matching method. The Soundex has been found to be unreliable both as a phonetic and as an approximate string matching method. We found that their data, in many cases, has more than one value per field, suggesting that the data were queried from a 5NF data base. Consider that if a woman has been married 3 times, she may have up to 4 last names on record. This query process produced more than one tuple per database/entity apparently generating a Cartesian product of this data. In many cases, more than a dozen tuples were observed for a single database/entity. This approach is both ineffective and inefficient. An effective RL method should handle this multi-data without redundancy and use edit-distance for approximate string matching. However, due to high computational complexity, edit-distance will not scale well with big data problems. We developed two methodologies for resolving the aforementioned issues: PSH and ALIM. PSH – The Probabilistic Signature Hash is a composite method that increases the speed of Damerau-Levenshtein edit-distance. It combines signature filtering, probabilistic hashing, length filtering and prefix pruning to increase the speed of edit-distance. It is also lossless because it does not lose any true positive matches. ALIM – Aggregate Link and Iterative Match is a graph-based record linkage methodology that uses a multi-graph to store demographic data about people. ALIM performs string matching as records are inserted into the graph. ALIM eliminates data redundancy and stores the relationships between data. We tested PSH for string comparison and found it to be approximately 6,000 times faster than DL. We tested it against the trie-join methods and found that they are up to 6.26 times faster but lose between 10 and 20 percent of true positives. We tested ALIM against a method currently in use by a local health and human services department and found ALIM to produce significantly more matches (even with more restrictive match criteria) and that ALIM ran more than twice as fast. ALIM handles the multi-data problem and PSH allows the use of edit-distance comparison in this RL model. ALIM is more efficient and effective than a currently implemented RL system. This model can also be expanded to perform social network analysis and temporal data modeling. For human services, temporal modeling can reveal how policy changes and treatments affect clients over time and social network analysis can determine the effects of these on whole families by facilitating family linkage. / Computer and Information Science
|
62 |
Impedance Bandwidth Improvement of a Planar Antenna Based on Metamaterial-Inspired T-Matching NetworkAlibakhshikenari, M., Virdee, B.S., Shukla, P., Wang, Y., Azpilicueta, L., Naser-Moghadasi, M., See, Chan H., Elfergani, Issa T., Zebiri, C., Abd-Alhameed, Raed, Huynen, I., Rodriguez, J., Denidni, T.A., Falcone, F., Limiti, E. 08 May 2021 (has links)
Yes / In this paper a metamaterial-inspired T-matching network is directly imbedded inside the feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF wireless transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The matching network is first theoretically modelled to gain insight of its limitations. It was then implemented directly in the 50-Ω feedline to a standard circular patch antenna, which is an unconventional methodology. The antenna’s performance was verified through measurements. With the proposed technique there is 2.7 dBi improvement in the antenna’s radiation gain and 12% increase in the efficiency at the center frequency, and this is achieved over a significantly wider frequency range by a factor of approximately twenty. Moreover, there is good correlation between the theoretical model, method of moments simulation, and the measurement results.
|
63 |
How close is close enough? : temporal matching between visual and tactile signalingNeubauer, Catherine E. 01 January 2008 (has links)
Research has shown beneficial performance gains from concurrent multimodal presentation of visual and tactile signaling. Studies have also suggested the importance of closely matching or emulating the spatial characteristics of tactile signaling to its visual counterpart, resulting in intuitive tactile signals that are easily learned and that provide immediate benefits in the absence or concurrent presentation of visual signaling. The purpose for this study is to inform display design regarding how closely the tactile signaling should match the visual signaling temporally, before the difference is detected by the observer. Participants observed a visual signal presentation of six different circular patterns, that spatially matched a concurrent tactile presentation, with the visual presentation temporally being faster, slower, or the same speed as the tactile presentation. Results showed that participants were better at identifying a difference between the visual and tactile stimuli when the visual stimuli were faster, and when they were presented in a clockwise pattern. The incremental nature of the faster and slower visual presentations results in helpful guidelines for multimodal display design on how perceptible the temporal difference is between the tactile and visual modalities.
|
64 |
Psychological theories and lay accounts of occupational choice : a comparative study of mechanical engineering and nursing undergraduatesMoir, James January 1990 (has links)
Psychological investigation of occupational choice has traditionally followed one of two dominant approaches. The structural (or 'personality-matching') approach (e.g., Holland, 1985) has used pysychometric testing to predict occupational choice on the basis of personality assessments whilst the process (or 'developmental') approach (e.g., Ginzberg et al., 1951) has mainly used interview responses to identify stages in the maturation of vocational thinking culminating 'realistic' decision-~aking. The aim of this study was to test the utility of these approaches in undertaking a detailed analysis of interview data. Garfinkel's (1967) proposal that decisions can be viewed as the retrospective construction of 'sense-able' accounts provided a useful perspective on collected interview responses. A discourse analysis approach was adopted in which the functional nature of language, as achieving interactive purposes, was stressed (Potter and Wetherell, 1987). Finally, use was made of the conversation analytic focus on turn-taking in order to examine the interdependent nature of the question-and-answer turns of the interviews (e.g., Sacks, 1972). Forty undergraduate students following the BSc courses in mechanical engineering and nursing at Dundee Institute of Technology were interviewed. The sample consisted of twenty students from each course, ten from the first year and ten from the final year. Comparisons were made between the two vocational groups and between first and final year students. A preliminary examination of course selection interviews was also undertaken. The data could not be categorized in accordance with Holland's 'personality patterns' for mechanical engineering and nursing, nor in terms of Ginzberg's 'realistic stage' of vocational thinking, due to categorization conflicts and within-interview response variability. The apparent contradictions and complexities generated by categorizing responses in these terms were clarified when accounts were analyzed as ongoing constructions of 'sense-able' choices within which 'personality-expressive' and 'developmental-stage' talk served specific conversational functions. The findings call into question methods of careers guidance based on these theories and it is argued that attention should be directed at career-selection preparation. However, it should be noted that a focus on the conversational skills required to succeed in selection interviews could challenge faith in a meritocratic selection system.
|
65 |
Genetic algorithms for ambiguous labelling problemsMyers, Richard Oliver January 1999 (has links)
No description available.
|
66 |
Using linear features for absolute and exterior orientationPark, David W. G. January 1999 (has links)
No description available.
|
67 |
Graph pattern matching on social network analysisWang, Xin January 2013 (has links)
Graph pattern matching is fundamental to social network analysis. Its effectiveness for identifying social communities and social positions, making recommendations and so on has been repeatedly demonstrated. However, the social network analysis raises new challenges to graph pattern matching. As real-life social graphs are typically large, it is often prohibitively expensive to conduct graph pattern matching over such large graphs, e.g., NP-complete for subgraph isomorphism, cubic time for bounded simulation, and quadratic time for simulation. These hinder the applicability of graph pattern matching on social network analysis. In response to these challenges, the thesis presents a series of effective techniques for querying large, dynamic, and distributively stored social networks. First of all, we propose a notion of query preserving graph compression, to compress large social graphs relative to a class Q of queries. We then develop both batch and incremental compression strategies for two commonly used pattern queries. Via both theoretical analysis and experimental studies, we show that (1) using compressed graphs Gr benefits graph pattern matching dramatically; and (2) the computation of Gr as well as its maintenance can be processed efficiently. Secondly, we investigate the distributed graph pattern matching problem, and explore parallel computation for graph pattern matching. We show that our techniques possess following performance guarantees: (1) each site is visited only once; (2) the total network traffic is independent of the size of G; and (3) the response time is decided by the size of largest fragment of G rather than the size of entire G. Furthermore, we show how these distributed algorithms can be implemented in the MapReduce framework. Thirdly, we study the problem of answering graph pattern matching using views since view based techniques have proven an effective technique for speeding up query evaluation. We propose a notion of pattern containment to characterise graph pattern matching using views, and introduce efficient algorithms to answer graph pattern matching using views. Moreover, we identify three problems related to graph pattern containment, and provide efficient algorithms for containment checking (approximation when the problem is intractable). Fourthly, we revise graph pattern matching by supporting a designated output node, which we treat as “query focus”. We then introduce algorithms for computing the top-k relevant matches w.r.t. the output node for both acyclic and cyclic pattern graphs, respectively, with early termination property. Furthermore, we investigate the diversified top-k matching problem, and develop an approximation algorithm with performance guarantee and a heuristic algorithm with early termination property. Finally, we introduce an expert search system, called ExpFinder, for large and dynamic social networks. ExpFinder identifies top-k experts in social networks by graph pattern matching, and copes with the sheer size of real-life social networks by integrating incremental graph pattern matching, query preserving compression and top-k matching computation. In particular, we also introduce bounded (resp. unbounded) incremental algorithms to maintain the weighted landmark vectors which are used for incremental maintenance for cached results.
|
68 |
Extending graph homomorphism and simulation for real life graph matchingWu, Yinghui January 2011 (has links)
Among the vital problems in a variety of emerging applications is the graph matching problem, which is to determine whether two graphs are similar, and if so, find all the valid matches in one graph for the other, based on specified metrics. Traditional graph matching approaches are mostly based on graph homomorphism and isomorphism, falling short of capturing both structural and semantic similarity in real life applications. Moreover, it is preferable while difficult to find all matches with high accuracy over complex graphs. Worse still, the graph structures in real life applications constantly bear modifications. In response to these challenges, this thesis presents a series of approaches for ef?ciently solving graph matching problems, over both static and dynamic real life graphs. Firstly, the thesis extends graph homomorphism and subgraph isomorphism, respectively, by mapping edges from one graph to paths in another, and by measuring the semantic similarity of nodes. The graph similarity is then measured by the metrics based on these extensions. Several optimization problems for graph matching based on the new metrics are studied, with approximation algorithms having provable guarantees on match quality developed. Secondly, although being extended in the above work, graph matching is defined in terms of functions, which cannot capture more meaningful matches and is usually hard to compute. In response to this, the thesis proposes a class of graph patterns, in which an edge denotes the connectivity in a data graph within a predefined number of hops. In addition, the thesis defines graph pattern matching based on a notion of bounded simulation relation, an extension of graph simulation. With this revision, graph pattern matching is in cubic-time by providing such an algorithm, rather than intractable. Thirdly, real life graphs often bear multiple edge types. In response to this, the thesis further extends and generalizes the proposed revisions of graph simulation to a more powerful case: a novel set of reachability queries and graph pattern queries, constrained by a subclass of regular path expressions. Several fundamental problems of the queries are studied: containment, equivalence and minimization. The enriched reachability query does not increase the complexity of the above problems, shown by the corresponding algorithms. Moreover, graph pattern queries can be evaluated in cubic time, where two such algorithms are proposed. Finally, real life graphs are frequently updated with small changes. The thesis investigates incremental algorithms for graph pattern matching defined in terms of graph simulation, bounded simulation and subgraph isomorphism. Besides studying the results on the complexity bounds, the thesis provides the experimental study verifying that these incremental algorithms significantly outperform their batch counterparts in response to small changes, using real-life data and synthetic data.
|
69 |
Investigating and comparing multimodal biometric techniques19 May 2009 (has links)
M.Sc. / Determining the identity of a person has become vital in today’s world. Emphasis on security has become increasingly more common in the last few decades, not only in Information Technology, but across all industries. One of the main principles of security is that a system only be accessed by a legitimate user. According to the ISO 7498/2 document [1] (an international standard which defines an information security system architecture) there are 5 pillars of information security. These are Identification/Authentication, Confidentiality, Authorization, Integrity and Non Repudiation. The very first line of security in a system is identifying and authenticating a user. This ensures that the user is who he/she claims to be, and allows only authorized individuals to access your system. Technologies have been developed that can automatically recognize a person by his unique physical features. This technology, referred to as ‘biometrics’, allows us to quickly, securely and conveniently identify an individual. Biometrics solutions have already been deployed worldwide, and it is rapidly becoming an acceptable method of identification in the eye of the public. As useful and advanced as unimodal (single biometric sample) biometric technologies are, they have their limits. Some of them aren’t completely accurate; others aren’t as secure and can be easily bypassed. Recently it has been reported to the congress of the U.S.A [2] that about 2 percent of the population in their country do not have a clear enough fingerprint for biometric use, and therefore cannot use their fingerprints for enrollment or verification. This same report recommends using a biometric system with dual (multimodal) biometric inputs, especially for large scale systems, such as airports. In this dissertation we will investigate and compare multimodal biometric techniques, in order to determine how much of an advantage lies in using this technology, over its unimodal equivalent.
|
70 |
Low rank methods for network alignmentHuda Nassar (7047152) 15 August 2019 (has links)
Network alignment is the problem of finding a common subgraph between two graphs, and more generally <i>k </i>graphs. The results of network alignment are often used for information transfer, which makes it a powerful tool for deducing information or insight about networks. Network alignment is tightly related to the subgraph isomorphism problem which is known to be NP-hard, this makes the network alignment problem supremely hard in practice. Some algorithms have been devised to approach it via solving a form of a relaxed version of the NP-hard problem or by defining certain heuristic measures. These algorithms normally work well for problems when there is some form of prior known similarity between the nodes of the graphs to be aligned. The absence of such information makes the problem more challenging. In this scenario, these algorithms would often require much more time to finish executing, and even fail sometimes. The version of network alignment that this thesis tackles is the one when such prior similarity measures are absent. In this thesis, we address three versions of network alignment: (i) multimoal network alignment, (ii) standard pairwise network alignment, and (iii) multiple network alignment. A key common component of the algorithms presented in this thesis is exploiting a low rank structure in the network alignment problem and thus producing algorithms that run much faster than classic network alignment algorithms.
|
Page generated in 0.192 seconds