1 |
Deep Learning for Error Prediction In MIMO-OFDM system With Maximum Likelihood DetectorShe, Baoqing January 2018 (has links)
To increase link throughput in multi-input multi-output (MIMO) orthogonal frequencydivision multiplexing (OFDM) systems, transmission parameters such as code rate andmodulation order are required to be set adaptively. Therefore, block error rate (BLER)becomes a crucial measure which illustrates the quality of the link, thus being used in LinkAdaptation (LA) to determine the transmission parameters. However, existing methods topredict BLER are only valid for linear detectors, e.g. Minimum Mean Square Error (MMSE)detector [1]. In this thesis, we show that signal-to-interference-plus-noise ratio (SINR)exists in MIMO-OFDM system with MLD (maximum likelihood detection). Then, a machinelearning based method with Deep Neural Network (DNN) is proposed to analyze therelation between input features (channel matrix, modulation and coding scheme (MCS),signal-to-noise ratio(SNR)) and labels (CRC). Results shows that the classification of DNNis good. However, there is still deviation when compared output of DNN with thesimulated BLER. / För att öka länkhastigheten i MIMO-OFDM system bör överföringsparametrar somkodhastighet och moduleringsordning ändras dynamiskt. Blockfelfrekvensen (BLER) är enviktig komponent i kommunikationssystem som representerar hela länkkedjans status ochkan användas i länkanpassning (LA) för att avgöra överföringsparametrarna. Befintligametoder för att beräkna BLER är endast giltiga för linjära detektorer eg. MMSE. I dennarapport visar vi at SINR existerar i MIMO-OFDM system med MLD. Sedan föreslås enmaskininlärningsmetod baserad på djupa neuronnät (DNN) för att analysera förhållandetmellan olika delar av indata (kanal matrix, MCS, SNR) och utdata (CRC). Resultatet visar attDNN klassificerar CRC bra. Utdata från DNN avviker dock vid jämförsele med simuleradBLER.
|
Page generated in 0.0873 seconds