• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CMOS Integrated Resonators and Emerging Materials for MEMS Applications

Jackson Anderson (16551828) 18 July 2023 (has links)
<p>With the advent of increasingly complex radio systems at higher frequencies and the slowing of traditional CMOS process scaling with power concerns, there has been an increased focus on integration, architectural, and material innovations as a continued path forward in MEMS and logic. This work presents the first comprehensive experimental study of resonant body transistors in a commercial 14nm FinFET process, demonstrating differential radio frequency transduction as a function of transistor biasing through electrostatic, piezoresistive, and threshold voltage modulation. The impact of device design changes on unreleased resonator performance are further explored, highlighting the importance of phononic confinement in achieving an f*Q product of 8.2*10<sup>11</sup> at 11.73 GHz. Also shown are initial efforts towards the understanding of coupled oscillator architectures and a perovskite nickelate material system. Finally, development of resonators based on two-dimensional materials, whose scale is particularly attractive for high-frequency nano-mechanical resonators and acoustic devices, is discussed. Experiments towards dry transfer of tellurene flakes using geometries printed via two photon polymerization are presented along with optimization of a fabrication process for gated RF devices, presenting new opportunities for high-frequency electro-mechanical interactions in this topological material. </p>

Page generated in 0.0652 seconds