• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 18
  • 13
  • 11
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spreading and precoding for wireless MIMO-OFDM systems

Yacoub, Doris. January 2008 (has links)
Ulm, Univ., Diss., 2008.
2

Receiver Processing and Limited-Feedback User Scheduling for Multiuser MIMO and MIMO-OFDM Downlink

Eslami, Mohsen 11 1900 (has links)
Use of multiple antennas at both ends of a communication link, known as multiple-input multiple-output (MIMO), increases the reliability and/or capacity of that link. Orthogonal frequency division multiplexing (OFDM) is an effective technique for high data rate transmission over frequency selective channels. At this time MIMO-OFDM has been proposed for many emerging standards and seems to be a promising solution for future high data rate wireless communications. In the first part of this thesis, a novel sub-optimum detection method for spatially multiplexed multicarrier code division multiplexing (SM-MC-CDM) transmission is proposed. It is shown that compared to the spatially multiplexed OFDM (SM-OFDM), the frequency domain spreading in SM-MC-CDM systems results in an additional diversity gain. To take advantage of diversity and multiplexing while mitigating the interference, a low complexity efficient detector employing unified successive interference cancellation (U-SIC) is designed. Analytical results for the performance and capacity of zero-forcing (ZF) U-SIC are provided. Further performance improvement is achieved by adopting an iterative subcarrier reconstruction-detection algorithm in conjunction with the U-SIC. The results demonstrate significant performance improvement over other existing methods of comparable complexity. Performance of turbo-coded SM-MC-CDM transmission is also investigated. In the next part of the thesis, multiuser MIMO downlink is considered. Efficient transmission schemes based on zero-forcing (ZF) linear receiver processing, eigenmode transmission and partial channel state information are proposed. The proposed schemes utilize a handshaking procedure between the BS and the users to select (schedule) a subset of users and determine the precoding matrix at the base station (BS). The advantage of the proposed limited feedback schemes lies in their relatively low complexity scheduling algorithms and high sum rate throughput, even for a small pool of users. For large user pools and when the number of antennas at each user terminal is at least equal to the number of antennas at the BS, we show that the proposed scheme is asymptotically optimal in the sense that it achieves the same sum rate as the optimum scheme as the number of users approaches infinity. Next, net throughput is used as a benchmark to compare several MIMO-OFDM downlink transmission schemes with complete CSIT and also with limited feedback. Considering limited feedback per chunk user scheduling for MIMO-OFDM downlink, it is shown that there exists a chunk size which maximizes the average net throughput. It is shown that the net throughput maximizing chunk size depends on the number of users in the system and the communication channel's characteristics. Finally, future directions for possible research are given.
3

Receiver Processing and Limited-Feedback User Scheduling for Multiuser MIMO and MIMO-OFDM Downlink

Eslami, Mohsen Unknown Date
No description available.
4

Noncooperative and Cooperative Transmission Schemes with Precoding and Beamforming

Hardjawana, Wibowo January 2009 (has links)
Doctor of Philosophy / The next generation mobile networks are expected to provide multimedia applications with a high quality of service. On the other hand, interference among multiple base stations (BS) that co-exist in the same location limits the capacity of wireless networks. In conventional wireless networks, the base stations do not cooperate with each other. The BSs transmit individually to their respective mobile stations (MS) and treat the transmission from other BSs as interference. An alternative to this structure is a network cooperation structure. Here, BSs cooperate with other BSs to simultaneously transmit to their respective MSs using the same frequency band at a given time slot. By doing this, we significantly increase the capacity of the networks. This thesis presents novel research results on a noncooperative transmission scheme and a cooperative transmission scheme for multi-user multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM). We first consider the performance limit of a noncooperative transmission scheme. Here, we propose a method to reduce the interference and increase the throughput of orthogonal frequency division multiplexing (OFDM) systems in co-working wireless local area networks (WLANs) by using joint adaptive multiple antennas(AMA) and adaptive modulation (AM) with acknowledgement (ACK) Eigen-steering. The calculation of AMA and AM are performed at the receiver. The AMA is used to suppress interference and to maximize the signal-to-interference-plus-noise ratio (SINR). The AM scheme is used to allocate OFDM sub-carriers, power, and modulation mode subject to the constraints of power, discrete modulation, and the bit error rate (BER). The transmit weights, the allocation of power, and the allocation of sub-carriers are obtained at the transmitter using ACK Eigen-steering. The derivations of AMA, AM, and ACK Eigen-steering are shown. The performance of joint AMA and AM for various AMA configurations is evaluated through the simulations of BER and spectral efficiency (SE) against SIR. To improve the performance of the system further, we propose a practical cooperative transmission scheme to mitigate against the interference in co-working WLANs. Here, we consider a network coordination among BSs. We employ Tomlinson Harashima precoding (THP), joint transmit-receive beamforming based on SINR (signal-to-interference-plus-noise-ratio) maximization, and an adaptive precoding order to eliminate co-working interference and achieve bit error rate (BER) fairness among different users. We also consider the design of the system when partial channel state information (CSI) (where each user only knows its own CSI) and full CSI (where each user knows CSI of all users) are available at the receiver respectively. We prove analytically and by simulation that the performance of our proposed scheme will not be degraded under partial CSI. The simulation results show that the proposed scheme considerably outperforms both the existing noncooperative and cooperative transmission schemes. A method to design a spectrally efficient cooperative downlink transmission scheme employing precoding and beamforming is also proposed. The algorithm eliminates the interference and achieves symbol error rate (SER) fairness among different users. To eliminate the interference, Tomlinson Harashima precoding (THP) is used to cancel part of the interference while the transmit-receive antenna weights cancel the remaining one. A new novel iterative method is applied to generate the transmit-receive antenna weights. To achieve SER fairness among different users and further improve the performance of MIMO systems, we develop algorithms that provide equal SINR across all users and order the users so that the minimum SINR for each user is maximized. The simulation results show that the proposed scheme considerably outperforms existing cooperative transmission schemes in terms of the SER performance and complexity and approaches an interference free performance under the same configuration. We could improve the performance of the proposed interference cancellation further. This is because the proposed interference cancellation does not consider receiver noise when calculating the transmit-receive weight antennas. In addition, the proposed scheme mentioned above is designed specifically for a single-stream multi-user transmission. Here, we employ THP precoding and an iterative method based on the uplink-downlink duality principle to generate the transmit-receive antenna weights. The algorithm provides an equal SINR across all users. A simpler method is then proposed by trading off the complexity with a slight performance degradation. The proposed methods are extended to also work when the receiver does not have complete Channel State Informations (CSIs). A new method of setting the user precoding order, which has a much lower complexity than the VBLAST type ordering scheme but with almost the same performance, is also proposed. The simulation results show that the proposed schemes considerably outperform existing cooperative transmission schemes in terms of SER performance and approach an interference free performance. In all the cooperative transmission schemes proposed above, we use THP to cancel part of the interference. In this thesis, we also consider an alternative approach that bypasses the use of THP. The task of cancelling the interference from other users now lies solely within the transmit-receive antenna weights. We consider multiuser Gaussian broadcast channels with multiple antennas at both transmitter and receivers. An iterative multiple beamforming (IMB) algorithm is proposed, which is flexible in the antenna configuration and performs well in low to moderate data rates. Its capacity and bit error rate performance are compared with the ones achieved by the traditional zero-forcing method.
5

Noncooperative and Cooperative Transmission Schemes with Precoding and Beamforming

Hardjawana, Wibowo January 2009 (has links)
Doctor of Philosophy / The next generation mobile networks are expected to provide multimedia applications with a high quality of service. On the other hand, interference among multiple base stations (BS) that co-exist in the same location limits the capacity of wireless networks. In conventional wireless networks, the base stations do not cooperate with each other. The BSs transmit individually to their respective mobile stations (MS) and treat the transmission from other BSs as interference. An alternative to this structure is a network cooperation structure. Here, BSs cooperate with other BSs to simultaneously transmit to their respective MSs using the same frequency band at a given time slot. By doing this, we significantly increase the capacity of the networks. This thesis presents novel research results on a noncooperative transmission scheme and a cooperative transmission scheme for multi-user multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM). We first consider the performance limit of a noncooperative transmission scheme. Here, we propose a method to reduce the interference and increase the throughput of orthogonal frequency division multiplexing (OFDM) systems in co-working wireless local area networks (WLANs) by using joint adaptive multiple antennas(AMA) and adaptive modulation (AM) with acknowledgement (ACK) Eigen-steering. The calculation of AMA and AM are performed at the receiver. The AMA is used to suppress interference and to maximize the signal-to-interference-plus-noise ratio (SINR). The AM scheme is used to allocate OFDM sub-carriers, power, and modulation mode subject to the constraints of power, discrete modulation, and the bit error rate (BER). The transmit weights, the allocation of power, and the allocation of sub-carriers are obtained at the transmitter using ACK Eigen-steering. The derivations of AMA, AM, and ACK Eigen-steering are shown. The performance of joint AMA and AM for various AMA configurations is evaluated through the simulations of BER and spectral efficiency (SE) against SIR. To improve the performance of the system further, we propose a practical cooperative transmission scheme to mitigate against the interference in co-working WLANs. Here, we consider a network coordination among BSs. We employ Tomlinson Harashima precoding (THP), joint transmit-receive beamforming based on SINR (signal-to-interference-plus-noise-ratio) maximization, and an adaptive precoding order to eliminate co-working interference and achieve bit error rate (BER) fairness among different users. We also consider the design of the system when partial channel state information (CSI) (where each user only knows its own CSI) and full CSI (where each user knows CSI of all users) are available at the receiver respectively. We prove analytically and by simulation that the performance of our proposed scheme will not be degraded under partial CSI. The simulation results show that the proposed scheme considerably outperforms both the existing noncooperative and cooperative transmission schemes. A method to design a spectrally efficient cooperative downlink transmission scheme employing precoding and beamforming is also proposed. The algorithm eliminates the interference and achieves symbol error rate (SER) fairness among different users. To eliminate the interference, Tomlinson Harashima precoding (THP) is used to cancel part of the interference while the transmit-receive antenna weights cancel the remaining one. A new novel iterative method is applied to generate the transmit-receive antenna weights. To achieve SER fairness among different users and further improve the performance of MIMO systems, we develop algorithms that provide equal SINR across all users and order the users so that the minimum SINR for each user is maximized. The simulation results show that the proposed scheme considerably outperforms existing cooperative transmission schemes in terms of the SER performance and complexity and approaches an interference free performance under the same configuration. We could improve the performance of the proposed interference cancellation further. This is because the proposed interference cancellation does not consider receiver noise when calculating the transmit-receive weight antennas. In addition, the proposed scheme mentioned above is designed specifically for a single-stream multi-user transmission. Here, we employ THP precoding and an iterative method based on the uplink-downlink duality principle to generate the transmit-receive antenna weights. The algorithm provides an equal SINR across all users. A simpler method is then proposed by trading off the complexity with a slight performance degradation. The proposed methods are extended to also work when the receiver does not have complete Channel State Informations (CSIs). A new method of setting the user precoding order, which has a much lower complexity than the VBLAST type ordering scheme but with almost the same performance, is also proposed. The simulation results show that the proposed schemes considerably outperform existing cooperative transmission schemes in terms of SER performance and approach an interference free performance. In all the cooperative transmission schemes proposed above, we use THP to cancel part of the interference. In this thesis, we also consider an alternative approach that bypasses the use of THP. The task of cancelling the interference from other users now lies solely within the transmit-receive antenna weights. We consider multiuser Gaussian broadcast channels with multiple antennas at both transmitter and receivers. An iterative multiple beamforming (IMB) algorithm is proposed, which is flexible in the antenna configuration and performs well in low to moderate data rates. Its capacity and bit error rate performance are compared with the ones achieved by the traditional zero-forcing method.
6

Multiple antenna concepts in OFDM transmission systems

Stimming, Christian January 2009 (has links)
Zugl.: Hamburg, Harburg, Techn. Univ., Diss., 2009
7

VLSI circuits for MIMO preprocessing

Lüthi, Peter Jan January 2009 (has links)
Zugl.: Zürich, Techn. Hochsch., Diss., 2009
8

Sensitivity of OFDM Systems to Synchronization Errors and Spatial Diversity

Zhou, Yi 2010 December 1900 (has links)
In this dissertation, the problem of synchronization for OFDM-based wireless communication systems is studied. In the first part of this dissertation, the sensitivity of both single input single output (SISO) OFDM and multiple input multiple output (MIMO) OFDM receivers to carrier and timing synchronization errors are analyzed. Analytical expressions and numerical results for the power of inter-carrier interference (ICI) are presented. It is shown that the OFDM-based receivers are quite sensitive to residual synchronization errors. In wide-sense stationary uncorrelated scattering (WSSUS) frequency-selective fading channels, the sampling clock timing offset results in rotation of the subcarrier constellation, while carrier frequency offsets and phase jitter cause inter-carrier interference. The overall system performance in terms of symbol error rate is limited by the inter-carrier interference. For a reliable information reception, compensatory measures must be taken. The second part of this dissertation deals with the impact of spatial diversity (usage of multiple transmit/receive antennas) on synchronization. It is found that with multiple transmit and receive antennas, MIMO-OFDM systems can take advantage of the spatial diversity to combat carrier and timing synchronization imperfections. Diversity can favorably improve the synchronization performance. Data-aided and non-data-aided maximum likelihood symbol timing estimators for MIMO-OFDM systems are introduced. Computer simulations show that, by exploiting the spatial diversity, synchronization performance of MIMO-OFDM systems in terms of mean squared error (MSE) of residual timing offset becomes significantly more reliable when compared to conventional SISO OFDM systems. Therefore, spatial diversity is a useful technique to be exploited in the deployment of MIMO-OFDM communication systems. In MIMO systems with synchronization sequences, timing synchronization is treated as a multiple hypotheses testing problem. Generalized likelihood ratio test (GLRT) statistics are developed for MIMO systems in frequency flat channels and MIMO-OFDM systems in frequency selective fading environments. The asymptotic performance of the GLRT without nuisance parameters is carried out. It is shown that the asymptotic performance of the GLRT can serve as an upper bound for the detection probability in the presence of a limited number of observations as well as a benchmark for comparing the performances of different timing synchronizers.
9

Adaptive resource allocation schemes in MIMO-OFDM based cellular communication systems /

Grünheid, Rainer. January 2007 (has links)
Techn. University, Institut für Nachrichtentechnik, Habil-Schr. 2006--Hamburg-Harburg, 2006.
10

Study of Channel Estimation in MIMO-OFDM for Software Defined Radio

Wang, Qi January 2007 (has links)
<p>The aim of the thesis is to find out the most suitable channel estimation algorithms for the existing MIMO-OFDM SDR platform. Starting with the analysis of several prevalent channel estimation algorithms, MSE performance are compared under different scenarios. As a result of the hardware independent analysis, the complexvalued matrix computations involved in the algorithms are decomposed to real FLoating-point OPerations (FLOPs). Four feasible algorithms are selected for hardware dependent discussion based on the proposed hardware architecture. The computational latency is exposed as a manner of case study.</p>

Page generated in 0.0266 seconds