1 |
Viral Control of SR Protein ActivityEstmer Nilsson, Camilla January 2001 (has links)
<p>Viruses modulate biosynthetic machineries of the host cell for a rapid and efficient virus replication. One important way of modulating protein activity in eukaryotic cells is by reversible phosphorylation. In this thesis we have studied adenovirus and vaccinia virus, two DNA viruses with different replication stategies. Adenovirus replicates and assembles new virions in the nucleus, requiring the host cell transcription and splicing machinieries, whereas vaccinia virus replicates in the cytoplasm, only requiring the cellular translation machinery for its replication. </p><p>Adenovirus uses alternative RNA splicing to produce its proteins. We have shown that adenovirus takes over the cellular splicing machinery by modulating the activity of the essential cellular SR family of splicing factors. Vaccinia virus, that does not use RNA splicing, was shown to completely inactivate SR proteins as splicing regulatory factors. SR proteins are highly phosphorylated, a modification which is important for their activity as regulators of cellular pre-mRNA splicing. We have found that reversible phosphorylation of SR proteins is one mechanism to regulate alternative RNA splicing. We have demonstrated that adenovirus and vaccinia virus induce SR protein dephosphorylation, which inhibit their activity as splicing repressor and splicing activator proteins. We further showed that the adenovirus E4-ORF4 protein, which binds to the cellular protein phosphatase 2A, induced dephosphorylation of a specific SR protein, ASF/SF2, and that this mechanism was important for regulation of adenovirus alternative RNA splicing.</p><p>Inhibition of cellular pre-mRNA splicing results in a block in nuclear- to cytoplasmic transport of cellular mRNAs, ensuring free access of viral mRNAs to the translation machinery. We propose that SR protein dephosphorylation may be a general viral mechanism by which mammalian viruses take control over host cell gene expression.</p>
|
2 |
Regulation of adenovirus alternative pre-mRNA splicing : Functional characterization of exonic and intronic splicing enhancer elementsYue, Bai-Gong January 2000 (has links)
<p>Pre-mRNA splicing and alternative pre-mRNA splicing are key regulatory steps controlling geneexpression in higher eukaryotes. The work in this thesis was focused on a characterization of thesignificance of exonic and intronic splicing enhancer elements for pre-mRNA splicing.</p><p>Previous studies have shown that removal of introns with weak and regulated splice sitesrequire a splicing enhancer for activity. Here we extended these studies by demonstrating thattwo "strong" constitutively active introns, the adenovirus 52,55K and the Drosophila Ftzintrons, are absolutely dependent on a downstream splicing enhancer for activity <i>in vitro</i>.</p><p>Two types splicing enhancers were shown to perform redundant functions as activators ofSplicing. Thus, SR protein binding to an exonic splicing enhancer element or U1 snRNP bindingto a downstream 5'splice site independently stimulated upstream intron removal. The datafurther showed that a 5'splice site was more effective and more versatile in activating splicing.Collectively the data suggest that a U1 enhancer is the prototypical enhancer element activatingsplicing of constitutively active introns.</p><p>Adenovirus IIIa pre-mRNA splicing is enhanced more than 200-fold in infected extracts. Themajor enhancer element responsible for this activation was shown to consist of the IIIa branchsite/polypyrimidne tract region. It functions as a Janus element and blocks splicing in extractsfrom uninfected cells while functioning as a splicing enhancer in the context of infected extracts.</p><p>Phosphorylated SR proteins are essential for pre-mRNA splicing. Large amount recombinantSR proteins are needed in splicing studies. A novel expression system was developed to expressphosphorylated, soluble and functionally active ASF/SF2 in <i>E. Coli</i>.</p>
|
3 |
Regulation of adenovirus alternative pre-mRNA splicing : Functional characterization of exonic and intronic splicing enhancer elementsYue, Bai-Gong January 2000 (has links)
Pre-mRNA splicing and alternative pre-mRNA splicing are key regulatory steps controlling geneexpression in higher eukaryotes. The work in this thesis was focused on a characterization of thesignificance of exonic and intronic splicing enhancer elements for pre-mRNA splicing. Previous studies have shown that removal of introns with weak and regulated splice sitesrequire a splicing enhancer for activity. Here we extended these studies by demonstrating thattwo "strong" constitutively active introns, the adenovirus 52,55K and the Drosophila Ftzintrons, are absolutely dependent on a downstream splicing enhancer for activity in vitro. Two types splicing enhancers were shown to perform redundant functions as activators ofSplicing. Thus, SR protein binding to an exonic splicing enhancer element or U1 snRNP bindingto a downstream 5'splice site independently stimulated upstream intron removal. The datafurther showed that a 5'splice site was more effective and more versatile in activating splicing.Collectively the data suggest that a U1 enhancer is the prototypical enhancer element activatingsplicing of constitutively active introns. Adenovirus IIIa pre-mRNA splicing is enhanced more than 200-fold in infected extracts. Themajor enhancer element responsible for this activation was shown to consist of the IIIa branchsite/polypyrimidne tract region. It functions as a Janus element and blocks splicing in extractsfrom uninfected cells while functioning as a splicing enhancer in the context of infected extracts. Phosphorylated SR proteins are essential for pre-mRNA splicing. Large amount recombinantSR proteins are needed in splicing studies. A novel expression system was developed to expressphosphorylated, soluble and functionally active ASF/SF2 in E. Coli.
|
4 |
Viral Control of SR Protein ActivityEstmer Nilsson, Camilla January 2001 (has links)
Viruses modulate biosynthetic machineries of the host cell for a rapid and efficient virus replication. One important way of modulating protein activity in eukaryotic cells is by reversible phosphorylation. In this thesis we have studied adenovirus and vaccinia virus, two DNA viruses with different replication stategies. Adenovirus replicates and assembles new virions in the nucleus, requiring the host cell transcription and splicing machinieries, whereas vaccinia virus replicates in the cytoplasm, only requiring the cellular translation machinery for its replication. Adenovirus uses alternative RNA splicing to produce its proteins. We have shown that adenovirus takes over the cellular splicing machinery by modulating the activity of the essential cellular SR family of splicing factors. Vaccinia virus, that does not use RNA splicing, was shown to completely inactivate SR proteins as splicing regulatory factors. SR proteins are highly phosphorylated, a modification which is important for their activity as regulators of cellular pre-mRNA splicing. We have found that reversible phosphorylation of SR proteins is one mechanism to regulate alternative RNA splicing. We have demonstrated that adenovirus and vaccinia virus induce SR protein dephosphorylation, which inhibit their activity as splicing repressor and splicing activator proteins. We further showed that the adenovirus E4-ORF4 protein, which binds to the cellular protein phosphatase 2A, induced dephosphorylation of a specific SR protein, ASF/SF2, and that this mechanism was important for regulation of adenovirus alternative RNA splicing. Inhibition of cellular pre-mRNA splicing results in a block in nuclear- to cytoplasmic transport of cellular mRNAs, ensuring free access of viral mRNAs to the translation machinery. We propose that SR protein dephosphorylation may be a general viral mechanism by which mammalian viruses take control over host cell gene expression.
|
5 |
The Modular Domain Structure of ASF/SF2: Significance for its Function as a Regulator of RNA SplicingDauksaite, Vita January 2003 (has links)
<p>ASF/SF2 is an essential splicing factor, required for constitutive splicing, and functioning as a regulator of alternative splicing. ASF/SF2 is modular in structure and contains two amino-terminal RNA binding domains (RBD1 and RBD2), and a carboxy-terminal RS domain. The results from my studies show that the different activities of ASF/SF2 as a regulator of alternative 5’ and 3’ splice site selection can be attributed to distinct domains of ASF/SF2.</p><p>I show that ASF/SF2-RBD2 is both necessary and sufficient to reproduce the splicing repressor function of ASF/SF2. A SWQDLKD motif was shown to be essential for the splicing repressor activity of ASF/SF2. In conclusion, this study demonstrated that ASF/SF2 encodes for distinct domains responsible for its function as a splicing enhancer (the RS domain) or a splicing repressor (the RBD2) protein. Using a model transcript containing two competing 3’ splice sites it was further demonstrated that the activity of ASF/SF2 as a regulator of alternative 3’ splice site selection was directional: i.e. resulting in RS or RBD1 mediated activation of upstream 3’ splice site selection while simultaneously causing an RBD2 mediated repression of downstream 3’ splice site usage.</p><p>In alternative 5’ splice site selection, the RBD2 alone was sufficient to reproduce the activity of the full-length protein as an inducer of proximal 5’ splice site usage, while RBD1 had the opposite effect and induced distal 5’ splice site selection. The conserved SWQDLKD motif and the RNP-1 type RNA recognition motif in ASF/SF2-RBD2 were both essential for this induction. The activity of the ASF/SF2-RBD2 domain as a regulator of alternative 5’ splice site was shown to correlate with the RNA binding capacity of the domain.</p><p>Collectively, my results suggest that the RBD2 domain in ASF/SF2 plays the most decisive role in the alternative 5’ and 3’ splice site regulatory activities of ASF/SF2.</p>
|
6 |
The Modular Domain Structure of ASF/SF2: Significance for its Function as a Regulator of RNA SplicingDauksaite, Vita January 2003 (has links)
ASF/SF2 is an essential splicing factor, required for constitutive splicing, and functioning as a regulator of alternative splicing. ASF/SF2 is modular in structure and contains two amino-terminal RNA binding domains (RBD1 and RBD2), and a carboxy-terminal RS domain. The results from my studies show that the different activities of ASF/SF2 as a regulator of alternative 5’ and 3’ splice site selection can be attributed to distinct domains of ASF/SF2. I show that ASF/SF2-RBD2 is both necessary and sufficient to reproduce the splicing repressor function of ASF/SF2. A SWQDLKD motif was shown to be essential for the splicing repressor activity of ASF/SF2. In conclusion, this study demonstrated that ASF/SF2 encodes for distinct domains responsible for its function as a splicing enhancer (the RS domain) or a splicing repressor (the RBD2) protein. Using a model transcript containing two competing 3’ splice sites it was further demonstrated that the activity of ASF/SF2 as a regulator of alternative 3’ splice site selection was directional: i.e. resulting in RS or RBD1 mediated activation of upstream 3’ splice site selection while simultaneously causing an RBD2 mediated repression of downstream 3’ splice site usage. In alternative 5’ splice site selection, the RBD2 alone was sufficient to reproduce the activity of the full-length protein as an inducer of proximal 5’ splice site usage, while RBD1 had the opposite effect and induced distal 5’ splice site selection. The conserved SWQDLKD motif and the RNP-1 type RNA recognition motif in ASF/SF2-RBD2 were both essential for this induction. The activity of the ASF/SF2-RBD2 domain as a regulator of alternative 5’ splice site was shown to correlate with the RNA binding capacity of the domain. Collectively, my results suggest that the RBD2 domain in ASF/SF2 plays the most decisive role in the alternative 5’ and 3’ splice site regulatory activities of ASF/SF2.
|
7 |
The Adenovirus L4-33K Protein : A Key Regulator of Virus-specific Alternative SplicingTörmänen Persson, Heidi January 2011 (has links)
Adenoviruses have been extensively studied in the field of gene regulation, since their genes are subjected to a tightly controlled temporal expression during the virus lifetime. The early-to-late shift in adenoviral gene expression distinguishes two completely different programs in gene expression. The adenoviral L4-33K protein, which is the subject of this thesis, was previously implicated to be a key player in the transition from the early to the late phase of infection. Here we show that L4-33K activates late gene expression by functioning as a virus-encoded alternative RNA splicing factor activating splicing of transcripts containing weak 3’ splice sites; a feature common to the viral genes expressed at late times of infection. The splicing enhancer activity of L4-33K was mapped to a tiny arginine/serine (RS) repeat in the carboxyl-terminal domain of the protein. Also, the subcellular distribution to the nucleus with enrichment in the nuclear membrane and subnuclear redistribution to viral replication centers during a lytic infection was observed to depend on this motif. RS repeats are common features for the cellular splicing factors serine/arginine-rich (SR) proteins, which in turn are regulated by reversible phosphorylation. We further show that L4-33K is phosphorylated by two cellular protein kinases, the double-stranded DNA-dependent protein kinase (DNA-PK) and protein kinase A (PKA) in vitro. Interestingly, DNA-PK and PKA have opposite effects on the control of the temporally regulated L1 alternative RNA splicing. DNA-PK functions as an inhibitor of the late specific L1-IIIa pre-mRNA splicing whereas PKA functions as an activator of L1-IIIa pre-mRNA splicing. In summary, this thesis describes L4-33K as an SR protein related viral alternative splicing factor. A tiny RS repeat conveys splicing enhancer activity as well as redistribution of L4-33K to replication centers. Finally, DNA-PK and PKA that phosphorylates L4-33K are suggested to be novel regulatory factors controlling adenovirus alternative splicing.
|
Page generated in 0.0176 seconds