• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cytochrome P450 mRNA profile in human breast cancer cell lines

Warasiha, Benjamart January 2008 (has links)
Cytochrome P450 enzymes (P450s) are involved in cancer development and treatment due to their roles in the oxidative metabolism of various endogenous (e.g. oestrogen) and exogenous (e.g. tamoxifen) compounds. It is well-known that intermediate P450 metabolites derived from oestrogen metabolism are associated with breast carcinogenesis. The main aim of this project was to profile the cytochrome P450 and P450-regulatory nuclear receptor mRNAs in a series of breast cancer cell lines (BCCs) and compare this profile with normal breast cells. This study used the qualitative reverse transcriptasepolymerase chain reaction (RT-PCR) to detect mRNA expression of target genes. Results showed CYP1B1, CYP2D6, CYP2J2, CYP2R1, CYP2U1 and CYP4X1 mRNA to be present in all cell lines. CYP2A6, CYP2C8, CYP2C18, CYP2F1 and CYP4Z1 mRNA were expressed in oestrogen receptor (ER)-positiveCaucasian and ER-negative Afro- Caribbean BCCs. Although no differences in P450 mRNA were observed between the different ethnic groups, these preliminary findings suggest potential similarities in the ERpositive Caucasian and ER-negative Afro-Caribbean BCCs which warrant further investigation The CYP4Z1 PCR product was identified as two distinct bands. Specific primer sets were used to demonstrate potential intron retention in CYP4Z1. Using established in vitro models for the study of regulatory mechanisms of CYP4Z1, T47D and ZR-75-1 breast cancer cell lines were used to determine the appropriate nuclear receptors (i.e. progesterone receptor, glucocorticoid receptor or peroxisome proliferator-activated receptor alpha ). These findings suggest that there may be an alternative receptor mechanism involved in CYP4Z1 mRNA induction in these cells. In conjunction, pre-treatment of these two cell lines with the RNA synthesis inhibitor actinomycin D followed by the agonists showed a significant reduction (p < 0.05) of CYP4Z1 mRNA levels and inhibited CYP4Z1 induction by either progesterone, dexamethasone or pirinixic acid, indicating that these agonists have effects on CYP4Z1 mRNA transcription or stability. In contrast, cycloheximide differentially affected the level of CYP4Z1 mRNA induction by these agonists. Taken together, these results suggest that CYP4Z1 mRNA induction in T47D and ZR-75-1 is mediated through differential cell type specific regulatory mechanisms and there is evidence for differential regulation of the splice variants.
2

The Modular Domain Structure of ASF/SF2: Significance for its Function as a Regulator of RNA Splicing

Dauksaite, Vita January 2003 (has links)
<p>ASF/SF2 is an essential splicing factor, required for constitutive splicing, and functioning as a regulator of alternative splicing. ASF/SF2 is modular in structure and contains two amino-terminal RNA binding domains (RBD1 and RBD2), and a carboxy-terminal RS domain. The results from my studies show that the different activities of ASF/SF2 as a regulator of alternative 5’ and 3’ splice site selection can be attributed to distinct domains of ASF/SF2.</p><p>I show that ASF/SF2-RBD2 is both necessary and sufficient to reproduce the splicing repressor function of ASF/SF2. A SWQDLKD motif was shown to be essential for the splicing repressor activity of ASF/SF2. In conclusion, this study demonstrated that ASF/SF2 encodes for distinct domains responsible for its function as a splicing enhancer (the RS domain) or a splicing repressor (the RBD2) protein. Using a model transcript containing two competing 3’ splice sites it was further demonstrated that the activity of ASF/SF2 as a regulator of alternative 3’ splice site selection was directional: i.e. resulting in RS or RBD1 mediated activation of upstream 3’ splice site selection while simultaneously causing an RBD2 mediated repression of downstream 3’ splice site usage.</p><p>In alternative 5’ splice site selection, the RBD2 alone was sufficient to reproduce the activity of the full-length protein as an inducer of proximal 5’ splice site usage, while RBD1 had the opposite effect and induced distal 5’ splice site selection. The conserved SWQDLKD motif and the RNP-1 type RNA recognition motif in ASF/SF2-RBD2 were both essential for this induction. The activity of the ASF/SF2-RBD2 domain as a regulator of alternative 5’ splice site was shown to correlate with the RNA binding capacity of the domain.</p><p>Collectively, my results suggest that the RBD2 domain in ASF/SF2 plays the most decisive role in the alternative 5’ and 3’ splice site regulatory activities of ASF/SF2.</p>
3

The Modular Domain Structure of ASF/SF2: Significance for its Function as a Regulator of RNA Splicing

Dauksaite, Vita January 2003 (has links)
ASF/SF2 is an essential splicing factor, required for constitutive splicing, and functioning as a regulator of alternative splicing. ASF/SF2 is modular in structure and contains two amino-terminal RNA binding domains (RBD1 and RBD2), and a carboxy-terminal RS domain. The results from my studies show that the different activities of ASF/SF2 as a regulator of alternative 5’ and 3’ splice site selection can be attributed to distinct domains of ASF/SF2. I show that ASF/SF2-RBD2 is both necessary and sufficient to reproduce the splicing repressor function of ASF/SF2. A SWQDLKD motif was shown to be essential for the splicing repressor activity of ASF/SF2. In conclusion, this study demonstrated that ASF/SF2 encodes for distinct domains responsible for its function as a splicing enhancer (the RS domain) or a splicing repressor (the RBD2) protein. Using a model transcript containing two competing 3’ splice sites it was further demonstrated that the activity of ASF/SF2 as a regulator of alternative 3’ splice site selection was directional: i.e. resulting in RS or RBD1 mediated activation of upstream 3’ splice site selection while simultaneously causing an RBD2 mediated repression of downstream 3’ splice site usage. In alternative 5’ splice site selection, the RBD2 alone was sufficient to reproduce the activity of the full-length protein as an inducer of proximal 5’ splice site usage, while RBD1 had the opposite effect and induced distal 5’ splice site selection. The conserved SWQDLKD motif and the RNP-1 type RNA recognition motif in ASF/SF2-RBD2 were both essential for this induction. The activity of the ASF/SF2-RBD2 domain as a regulator of alternative 5’ splice site was shown to correlate with the RNA binding capacity of the domain. Collectively, my results suggest that the RBD2 domain in ASF/SF2 plays the most decisive role in the alternative 5’ and 3’ splice site regulatory activities of ASF/SF2.
4

An experimental and genomic approach to the regulation of alternative pre-mRNA splicing in Drosophila rnp-4f

Fetherson, Rebecca A. January 2005 (has links)
Thesis (M.S.)--Miami University, Dept. of Zoology, 2005. / Title from first page of PDF document. Document formatted into pages; contains [1], ix, 75 p. : ill. Includes bibliographical references (p. 69-75).
5

An experimental and genomic approach to the regulation of alternative pre-mRNA splicing in Drosophila rnp-4f

Fetherson, Rebecca A. 30 April 2005 (has links)
No description available.
6

Cracking the code of 3' ss selection in s.cerevisiae

Meyer, Markus 26 March 2010 (has links)
The informational content of 3' splice sites is low and the mechanisms whereby they are selected are not clear. Here we enunciate a set of rules that govern their selection. For many introns, secondary structures are a key factor, because they occlude alternative 3'ss from the spliceosome and reduce the effective distance between the BS and the 3'ss to a maximum of 45 nucleotides. Further alternative 3'ss are disregarded by the spliceosome because they lie at 9 nucleotides or less from the branch site, or because they are weak splice sites. With these rules, we are able to explain the splicing pattern of the vast majority of introns in Saccharomyces cerevisiae. When in excess, L30 blocks the splicing of its own transcript by interfering with a critical rearrangement that is required for the proper recognition of the intron 3' end, and thus for splicing to proceed. We show that the protein Cbp80 has a role in promoting this rearrangement and therefore antagonizes splicing regulation by L30. / Tanto la información que define el sitio de splicing 3' como los mecanismos de selección del mismo son poco conocidos. En este trabajo, proponemos una serie de reglas que gobiernan esta selección. Las estructuras secundarias son claves en el caso de muchos intrones, porque son capaces de ocultar sitios de splicing alternativos 3' al spliceosoma, y además reducen la distancia efectiva entre el punto de ramificación y el sitio de splicing 3' a un máximo de 45 nucleotidos. Otros sitios de splicing alternativo 3' no son considerados por el spliceosoma como tales porque se encuentran a 9 nucleotidos o menos del punto de ramificación, o porque son sitios de splicing débiles. Con estas reglas somos capaces de explicar el splicing de la mayoría de intrones de Saccharomyces cerevisiae. El exceso de proteína L30 bloquea el splicing de su propio tránscrito porque interfiere con la reorganización necesaria para el correcto reconocimiento del 3' final del intrón, y por tanto de su splicing. Demostramos que la proteína Cbp80 está implicada en promover esta reorganización y que por tanto antagoniza la regulación del splicing por L30.
7

Histonmodifieringar och alternativ splicing / Histone modifications and alternative splicing

Berggren, Jenny January 2011 (has links)
Alternativ splicing av pre-mRNA ger upphov till proteindiversitet. Histonmodifieringar kopplas till den alternativa splicingens reglering genom adaptorsystem som overfor den epigenetiska informationen direkt till splicingfaktorerna. De cis- agerande RNA- elementen pa exoner och introner med tillhorande trans- reglerande splicingfaktorer paverkas darfor direkt av specifika histonmodifieringar. En sammankopplande integrerad modell over en rad DNA- baserade processer foreslas. Denna komplexa modell ger en bild av interaktioner och paverkan mellan dessa delar. Kromatin remodellering kravs for bildandet av eukromatin. Nukleosomers placering vid exonrika regioner med specifika modifieringsmonster pekar ut exonerna samt mojliggor inbindning av RNA polymeras II som med sin CTD doman rekryterar bade splicing- och modifieringsfaktorer. Transkriptionshastigheten paverkas av nukleosomplaceringen vilket i sin tur paverkar rekrytering av spliceosomens komponenter, andra trans- agerande regulatorer och aven pre-mRNA sekvensens sekundarstruktur. Kromatin- adaptorkomplex laser av specifika histonmodifieringar och overfor informationen till splicingapparaten. Detta skapar mojlighet till den viktiga cell- och vavnadsspecifika alternativa splicingens reglering. I den integrerade modellen blir komplexiteten tydligare dar alla dessa processer interagerar med varandra och de cis- regulatoriska sekvenserna pa premRNA transkriptet. / Alternative splicing of pre-mRNA generates protein diversity. Histone modifications are connected to the regulation of alternative splicing through adaptor systems that transfers the epigenetic information directly to the splicing factors. The cis- acting RNA elements on the exons and introns together with the trans- regulating splicing factors are therefore directly affected of specific histone modifications. An integrated model over several DNA process mechanisms is suggested. This complex model explains the interactions of the different parts and how they affect each other. Chromatin remodelers are required to obtain euchromatin. Nucleosome positioning at exon rich regions with a specific modification pattern point out where the exons are, and this enable the RNA polymerase II to find and bind to the DNA. It’s CTD domain recruits both splicing- and modifications factors. The transcription rate is also affected of the nucleosome positioning and that in turn affects the recruitment of the components of the spliceosomen, other trans- acting regulators and even the formation of the secondary structure of the pre-mRNA transcript. Chromatin- adaptor complex reads specific histone modifications and transfers this information to the splicing apparatus. All this creates the possibility to regulate important cell- and tissue specific alternative splicing patterns. The integrated model makes the complex processes more clearer when all these integrates with each other and the cis- acting regulating elements on the pre-mRNA transcript.
8

Complex Regulation Of Neurofibromatosis Type I Exon 23a Inclusion By The CUG-BP AND ETR-3-LIKE Factors (CELF) And Muscleblind-Like (MBNL) Proteins

Fleming, Victoria Amber 22 May 2012 (has links)
No description available.

Page generated in 0.147 seconds