• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 9
  • 9
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

REGULATION OF PRE-MRNA SPLICING IN MAMMALIAN CELLS: IDENTIFICATION AND CHARACTERIZATION OF INTRONIC AND EXONIC SILENCERS

Yu, Yang 13 July 2007 (has links)
No description available.
2

Co-transcriptional recruitment of the U1 snRNP

Kotovic, Kimberly Marie 16 November 2004 (has links) (PDF)
It is currently believed that the splicing of most pre-mRNAs occurs, at least in part, co-transcriptionally. In order to validate this principle in yeast and establish an experimental system for monitoring spliceosome assembly in vivo, I have employed the chromatin immunoprecipitation (ChIP) assay to study co-transcriptional splicing events. Here, I use ChIP to examine key questions with respect to the recent proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. In my thesis, I address: 1) whether the U1 snRNP, which binds to the 5¡¦ splice site of each intron, is recruited co-transcriptionally in vivo and 2) if so, where along the length of active genes the U1 snRNP is concentrated. U1 snRNP accumulates on downstream positions of genes containing introns but not within promoter regions or along intronless genes. More specifically, accumulation correlated with the presence and position of the intron, indicating that the intron is necessary for co-transcriptional U1 snRNP recruitment and/or retention (Kotovic et al., 2003). In contrast to capping enzymes, which bind directly to Pol II (Komarnitsky et al., 2000; Schroeder et al., 2000), the U1 snRNP is poorly detected in promoter regions, except in genes harboring promoter-proximal introns. Detection of the U1 snRNP is dependent on RNA synthesis and is abolished by intron removal. Microarray data reveals that intron-containing genes are preferentially selected by ChIP with the U1 snRNP furthermore indicating recruitment specificity to introns. Because U1 snRNP levels decrease on downstream regions of intron-containing genes with long second exons, our lab is expanding the study to 3¡¦ splice site factors in hopes to address co-transcriptional splicing. In my thesis, I also focus on questions pertaining to the requirements for recruitment of the U1 snRNP to sites of transcription. To test the proposal that the cap-binding complex (CBC) promotes U1 snRNP recognition of the 5¡¦ splice site (Colot et al., 1996), I use a ?´CBC mutant strain and determine U1 snRNP accumulation by ChIP. Surprisingly, lack of the CBC has no effect on U1 snRNP recruitment. The U1 snRNP component Prp40p has been identified as playing a pivotal role in not only cross-intron bridging (Abovich and Rosbash, 1997), but also as a link between Pol II transcription and splicing factor recruitment (Morris and Greenleaf, 2000). My data shows that Prp40p recruitment mirrors that of other U1 snRNP proteins, in that it is not detected on promoter regions, suggesting that Prp40p does not constitutively bind the phosphorylated C-terminal domain (CTD) of Pol II as previously proposed. This physical link between Pol II transcription and splicing factor recruitment is further tested in Prp40p mutant strains, in which U1 snRNP is detected at normal levels. Therefore, U1 snRNP recruitment to transcription units is not dependent on Prp40p activity. My data indicates that co-transcriptional U1 snRNP recruitment is not dependent on the CBC or Prp40p and that any effects of these players on spliceosome assembly must be reflected in later spliceosome events. My data contrasts the proposed transcription factory model in which Pol II plays a central role in the recruitment of mRNA processing factors to TUs. According to my data, splicing factor recruitment acts differently than capping enzyme and 3¡¦ end processing factor recruitment; U1 snRNP does not accumulate at promoter regions of intron-containing genes or on intronless genes rather, accumulation is based on the synthesis of the intron. These experiments have lead me to propose a kinetic model with respect to the recruitment of splicing factors to active genes. In this model, U1 snRNP accumulation at the 5¡¦ splice site requires a highly dynamic web of protein-protein and protein-RNA interactions to occur, ultimately leading to the recruitment and/or stabilization of the U1 snRNP.
3

Co-transcriptional recruitment of the U1 snRNP

Kotovic, Kimberly Marie 16 November 2004 (has links)
It is currently believed that the splicing of most pre-mRNAs occurs, at least in part, co-transcriptionally. In order to validate this principle in yeast and establish an experimental system for monitoring spliceosome assembly in vivo, I have employed the chromatin immunoprecipitation (ChIP) assay to study co-transcriptional splicing events. Here, I use ChIP to examine key questions with respect to the recent proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. In my thesis, I address: 1) whether the U1 snRNP, which binds to the 5¡¦ splice site of each intron, is recruited co-transcriptionally in vivo and 2) if so, where along the length of active genes the U1 snRNP is concentrated. U1 snRNP accumulates on downstream positions of genes containing introns but not within promoter regions or along intronless genes. More specifically, accumulation correlated with the presence and position of the intron, indicating that the intron is necessary for co-transcriptional U1 snRNP recruitment and/or retention (Kotovic et al., 2003). In contrast to capping enzymes, which bind directly to Pol II (Komarnitsky et al., 2000; Schroeder et al., 2000), the U1 snRNP is poorly detected in promoter regions, except in genes harboring promoter-proximal introns. Detection of the U1 snRNP is dependent on RNA synthesis and is abolished by intron removal. Microarray data reveals that intron-containing genes are preferentially selected by ChIP with the U1 snRNP furthermore indicating recruitment specificity to introns. Because U1 snRNP levels decrease on downstream regions of intron-containing genes with long second exons, our lab is expanding the study to 3¡¦ splice site factors in hopes to address co-transcriptional splicing. In my thesis, I also focus on questions pertaining to the requirements for recruitment of the U1 snRNP to sites of transcription. To test the proposal that the cap-binding complex (CBC) promotes U1 snRNP recognition of the 5¡¦ splice site (Colot et al., 1996), I use a ?´CBC mutant strain and determine U1 snRNP accumulation by ChIP. Surprisingly, lack of the CBC has no effect on U1 snRNP recruitment. The U1 snRNP component Prp40p has been identified as playing a pivotal role in not only cross-intron bridging (Abovich and Rosbash, 1997), but also as a link between Pol II transcription and splicing factor recruitment (Morris and Greenleaf, 2000). My data shows that Prp40p recruitment mirrors that of other U1 snRNP proteins, in that it is not detected on promoter regions, suggesting that Prp40p does not constitutively bind the phosphorylated C-terminal domain (CTD) of Pol II as previously proposed. This physical link between Pol II transcription and splicing factor recruitment is further tested in Prp40p mutant strains, in which U1 snRNP is detected at normal levels. Therefore, U1 snRNP recruitment to transcription units is not dependent on Prp40p activity. My data indicates that co-transcriptional U1 snRNP recruitment is not dependent on the CBC or Prp40p and that any effects of these players on spliceosome assembly must be reflected in later spliceosome events. My data contrasts the proposed transcription factory model in which Pol II plays a central role in the recruitment of mRNA processing factors to TUs. According to my data, splicing factor recruitment acts differently than capping enzyme and 3¡¦ end processing factor recruitment; U1 snRNP does not accumulate at promoter regions of intron-containing genes or on intronless genes rather, accumulation is based on the synthesis of the intron. These experiments have lead me to propose a kinetic model with respect to the recruitment of splicing factors to active genes. In this model, U1 snRNP accumulation at the 5¡¦ splice site requires a highly dynamic web of protein-protein and protein-RNA interactions to occur, ultimately leading to the recruitment and/or stabilization of the U1 snRNP.
4

Auto-antigenic Properties of the Spliceosome as a Molecular Tool for Diagnosing Systemic Lupus Erythematosus and Mixed Connective Tissue Disease Patients

Mesa, Annia 21 March 2014 (has links)
Systemic Lupus Erythematosus (SLE) and Mixed Connective Tissue Disease (MCTD) are chronic, autoimmune disorders that target overlapping autoantigens and exhibit similar clinical manifestations. Despite 40 years of research, a reliable biomarker capable of diagnosing these syndromes has yet to be identified. Previous studies have confirmed that components of the U1 small nuclear ribonucleoprotein complex (U1 snRNP) such as U1A are 1000 fold more autoantigenic than any other nuclear component in SLE patients. Based on these findings, I hypothesize that models derived from the U1 snRNP autoantigenic properties could distinguish SLE from MCTD patients. To test this hypothesis, 30 peptides corresponding to protein regions of the U1 snRNP were tested in triplicates by indirect ELISA in sera from SLE or MCTD subjects. In addition laboratory tests and clinical manifestations data from these patients were included and analyzed in this investigation. Statistical classification methods as well as bioinformatics pattern recognition strategy were employed to determine which combination, if any, of all the variables included in this study provide the best segregation power for SLE and MCTD. The results confirmed that the IgM reactivity for U1 snRNP and U1A have the power to significantly distinguish SLE from MTCD patients as well as identify kidney and lung malfunctions for these subjects (p ≤ 0.05). Furthermore, the data analysis revealed eight novel classification rules for the segregation of SLE and MCTD which are a better classification tool than any of the currently available methods (p ≤ 0.05). Consequently, the results derived from this study support that SLE and MCTD are indeed separate disorders and pioneer the description of eight novel classification criteria capable of significantly discerning between SLE and MCTD patients (p ≤ 0.05).
5

Formování sestřihového komplexu / Spliceosome assembly

Hausnerová, Viola January 2011 (has links)
Pre-mRNA splicing is a process in which introns are removed from eukaryotic transcripts and exons are ligated together. Splicing is catalyzed by spliceosome, a large ribonucleoprotein complex composed of five small nuclear RNAs and more than 100 additional proteins, which recognizes 5' splice site, branch point site and 3' splice site and performs two transesterification reactions to produce mRNA molecules. 5' splice site is recognized by U1 snRNP and U2 auxiliary factor (U2AF) is involved in branch point and 3' splice site recognition in the early splicing complex. There is some evidence of splice sites cooperation during intron recognition in vitro but little is known about the situation in vivo. Using Fluorescence resonance energy transfer (FRET) and RNA immunoprecipitation (RIP) methods, we have investigated the early stages of spliceosome assembly. We have employed splicing reporters based on -globin gene and MS2 stem loops to detect interactions of proteins on RNA molecule directly in the cell nucleus. Results of FRET indicate that intact 5' splice site is required for U2AF35 interaction with 3' splice site and that U1C recruitment to 5' splice site is partially limited upon 3' splice site mutation. We have also confirmed by RIP that U2 snRNP association with pre-mRNA molecule requires presence of 5'...
6

Purification and crystallization of spliceosomal snRNPs / Reinigung und Kristallisation von spleißosomalen snRNPs

Weber, Gert 01 July 2008 (has links)
No description available.
7

Mechanism of regulation of the RPL30 pre-mRNA splicing in yeast

Macías Ribela, Sara 13 June 2008 (has links)
The mechanisms of pre-mRNA splicing regulation are poorly understood. Here we dissect how the Saccharomyces cerevisiae ribosomal L30 protein blocks splicing of its pre-mRNA upon binding a kink-turn structure including the 5' splice site. We show that L30 binds the nascent RPL30 transcript without preventing recognition of the 5' splice site by U1 snRNP but blocking U2 snRNP association with the branch site. Interaction of the factors BBP and Mud2p with the intron, relevant for U2 snRNP recruitment, is not affected by L30. Furthermore, the functions of neither the DEAD-box protein Sub2p in the incipient spliceosome, nor of the U2 snRNP factor Cus2p on branch site recognition, are required for L30 inhibition. These findings contrast with the effects caused by binding a heterologous protein to the same region, completely blocking intron recognition. Collectively, our data suggest that L30 represses a spliceosomal rearrangement required for U2 snRNP association with the nascent RPL30 transcript.
8

Cracking the code of 3' ss selection in s.cerevisiae

Meyer, Markus 26 March 2010 (has links)
The informational content of 3' splice sites is low and the mechanisms whereby they are selected are not clear. Here we enunciate a set of rules that govern their selection. For many introns, secondary structures are a key factor, because they occlude alternative 3'ss from the spliceosome and reduce the effective distance between the BS and the 3'ss to a maximum of 45 nucleotides. Further alternative 3'ss are disregarded by the spliceosome because they lie at 9 nucleotides or less from the branch site, or because they are weak splice sites. With these rules, we are able to explain the splicing pattern of the vast majority of introns in Saccharomyces cerevisiae. When in excess, L30 blocks the splicing of its own transcript by interfering with a critical rearrangement that is required for the proper recognition of the intron 3' end, and thus for splicing to proceed. We show that the protein Cbp80 has a role in promoting this rearrangement and therefore antagonizes splicing regulation by L30. / Tanto la información que define el sitio de splicing 3' como los mecanismos de selección del mismo son poco conocidos. En este trabajo, proponemos una serie de reglas que gobiernan esta selección. Las estructuras secundarias son claves en el caso de muchos intrones, porque son capaces de ocultar sitios de splicing alternativos 3' al spliceosoma, y además reducen la distancia efectiva entre el punto de ramificación y el sitio de splicing 3' a un máximo de 45 nucleotidos. Otros sitios de splicing alternativo 3' no son considerados por el spliceosoma como tales porque se encuentran a 9 nucleotidos o menos del punto de ramificación, o porque son sitios de splicing débiles. Con estas reglas somos capaces de explicar el splicing de la mayoría de intrones de Saccharomyces cerevisiae. El exceso de proteína L30 bloquea el splicing de su propio tránscrito porque interfiere con la reorganización necesaria para el correcto reconocimiento del 3' final del intrón, y por tanto de su splicing. Demostramos que la proteína Cbp80 está implicada en promover esta reorganización y que por tanto antagoniza la regulación del splicing por L30.
9

Functional Analyses of Human DDX41 and LUC7-like Proteins Involved in Splicing Regulation and Myeloid Neoplasms

Daniels, Noah James 23 May 2022 (has links)
No description available.

Page generated in 0.03 seconds