• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problémy rozvojové pomoci

Hintnaus, Viktor January 2007 (has links)
Obsahem diplomové práce je kritická analýza rozvojové pomoci ukazující na její největší problémy. Hlavním tématem práce je role konceptu podmíněnosti, který hraje v rozvojové pomoci důležitou roli. Ten je posléze aplikován na případovou studii, která se koncentruje na země Subsaharské Afriky ? Ghanu, Ugandu a Botswanu.
2

Příčiny finančních krizí v Mexiku a jihovýchodní Asii

Buldrová, Monika January 2006 (has links)
Práce se zabývá analýzou příčin finančních krizí v Mexiku a jihovýchodní Asii. Finanční krize v Mexiku (1994) byla první svého druhu v novodobé historii a zasáhla mnoho dalších ekonomik především v Latinské Americe. Krize, která propukla v roce 1997 v Asii, byla naprosto neočekávaná. Cílem práce je tedy identifikovat příčiny vzniku krize, porovnat kritické faktory u obou krizí a pokusit se odpovědět na otázku, proč byly varovné příznaky v případě Asie většinou přehlíženy.
3

The Nrf2 transcriptional target, OSGIN1, contributes to the cytoprotective properties of dimethyl fumarate

Brennan, Melanie Shackett 12 March 2016 (has links)
Understanding how defense signaling pathways regulate neuronal protection in the compromised central nervous system (CNS) is essential for combating neurodegenerative disorders. This is apparent in the intrinsic activation of the transcription factor Nrf2 during periods of oxidative stress, a hallmark of neurodegeneration. This regulator of the antioxidant response induces the transcription of genes essential for protecting against oxidative stress-induced damage and is a prime target for drug discovery. Delayed-release dimethyl fumarate (DMF), currently approved for the treatment of relapsing-remitting forms of multiple sclerosis (MS), is believed to mediate its effect via the Nrf2 pathway; however, the exact mechanisms of action are unknown. The primary aim of the studies outlined in this dissertation was to identify the molecular mechanisms of Nrf2 regulation and subsequent cellular protection conferred by DMF and its bioactive metabolite, monomethyl fumarate (MMF). For this thesis study, transcriptional profiling studies following oral administration of DMF were conducted to characterize DMF pharmacodynamic responses in the central nervous system (CNS) and peripheral tissues to understand the functional effects of DMF in vivo as well as explore the necessity of Nrf2 in this process. Data from these studies confirm earlier findings that DMF activates transcription of Nrf2 target genes in the CNS and periphery; however, tissue-specific gene expression was also observed, indicating additional levels of transcriptional control beyond Nrf2 activation. These findings suggest that there may be unique cytoprotective and immunomodulatory capabilities of DMF within specific tissues. In the CNS, a novel Nrf2 transcriptional target gene OSGIN1 was identified to be significantly upregulated following DMF treatment in vivo; however, the contribution of this gene to the pharmacodynamic properties of DMF or MMF has not been previously described. Therefore, the in vitro effects of MMF on OSGIN1 expression were characterized, and the necessity of OSGIN1 in mediating cytoprotective effects against toxic oxidative stress in human astrocytes was evaluated. These data identify a potential mechanism for MMF-mediated cytoprotection in human astrocytes that function in an OSGIN1 and p53-dependent manner. Overall, the experiments described in this dissertation allow for a broader understanding of endogenous cellular protection and how it can be used to combat CNS disorders.
4

Analýza postavení a činnosti Mezinárodního měnového fondu ve světové ekonomice / Analysis of the position and operations of the International monetary fund in the global economy

Hromádka, Jan January 2007 (has links)
The thesis analyzes how IMFs operations transformed as the changes took place in the global economy after world war two. Policy and means used by IMF to achieve its purposes are examined focusing on their effectiveness. The analysis illustrates an apparent change in the role the institution is playing in the global economy. In the first three decades after the world war two the IMFs key role was to maintain surveillance over the rules of the monetary system established at international financial conference in Bretton Woods. The introduction of floating exchange rate systems in developed countries, oil crisis and independence of many African countries caused a shift in IMFs main focus towards developing countries, long-term financing and technical assistance. The analysis concludes that the institution was only in part successful in its mission to maintain global economic stability only in part. In the nineties it reacted promptly to financial crisis by introduction of new facilities and by activating in coordination with other global players of large financial support for the affected countries. However in the period before the financial crisis occurred more attention IMF should have given more attention to precautionary measures eliminating the risks associated with capital volatility.
5

Překonání důsledků argentinské finanční krize od roku 2002 / Overcoming the Impacts of the Argentine Financial Crisis from 2002

Santinoni, Mariana January 2008 (has links)
This thesis focuses on the economic impact of the financial crisis that Argentina suffered between 2001 and 2002. It mainly analyses how the government approached such situation. The Currency Board regime ended and was substituted by a floating regime. Also many emergency measures were adopted in order to avoid even more chaotic situations. This thesis also deals with fiscal and monetary policy adopted in the longer term, which more or less until today reflexes the consequences of the crisis, i.e. fight against inflation, market regulation and sovereign debt towards official institutions and private investors.
6

Quantitative Assessment of Vegetation Renaturation and Soil Degradation and their Control by Climate and Ground Factors along Rights-of-Way of Petroleum/Gas Pipelines, Azerbaijan

Bayramov, Emil 21 January 2013 (has links) (PDF)
The construction of Baku-Tbilisi-Ceyhan (BTC) Oil and South Caucasus Gas (SCP) pipelines was completed in 2005. The Azerbaijan section of BTC Oil and SCP Gas pipelines is 442 km long and 44 m wide corridor named as the Right-of-Way. BTC and SCP pipelines are aligned parallel to each other within the same 44m corridor. The construction process of the pipelines significantly disturbed vegetation and soil cover along Right-of-Way of pipelines. The revegetation and erosion control measures were conducted after the completion of construction to restore the disturbed footprints of construction activities. The general goals of the present studies, dedicated to the environmental monitoring of revegetation and planning of erosion control measures were: to evaluate the status of the revegetation in 2007 since the completion of the construction activities in 2005, to determine the climate and ground factors controlling the vegetation regrowth and to predict erosion-prone areas along Right-of-Way of pipelines. Regression and root mean square error analysis between the Normalized Difference Vegetation Index (NDVI) of IKONOS images acquired in 2007 and in-situ estimations of vegetation cover percentage revealed R2 equal to 0.80 and RMSE equal to 6% which were optimal for the normalization of NDVI to vegetation cover. The total area of restored vegetation cover between 2005 and 2007 was 8.9 million sq. m. An area of 10.7 million sq. m. of ground vegetation needed restoration in order to comply with the environmental acceptance criteria. Based on the Global Spatial Regression Model, precipitation, land surface temperature and evapotranspiration were determined as the main climate factors controlling NDVI of grasslands along Right-of-Way of pipelines. In case of croplands, precipitation, evapotranspiration and annual minimum temperature were determined as the main factors controlling NDVI of croplands. The regression models predicting NDVI for grasslands and croplands were also formulated. The Geographically Weighted Regression analyses in comparison with the global regression models results clearly revealed that the relationship between NDVI of grasslands and croplands and the predictor variables was spatially non-stationary along the corridor of pipelines. Even though the observed R2 value between elevation and NDVI of grasslands was low (R2= 0.14), the accumulation of the largest NDVI patterns was observed higher than 150m elevation. This revealed that elevation has non-direct control of NDVI of grasslands through its control of precipitation and temperature along the grasslands of Right-of-Way. The spatial distribution percentage of NDVI classes within slope aspect categories was decreasing in the southern directions of slope faces. Land surface temperature was decreasing with elevation but no particular patterns of land surface temperature in the relationship with NDVI accumulation within the aspect categories were observed. Aspect categories have non-direct control of NDVI and there are some other factors apart from land surface temperature which require further investigations. Precipitation was determined to be controlling the formation of topsoil depth and the topsoil obviously controls the VC growth of grasslands as one of the main ground factors. The regression analysis between NDVI of grasslands and croplands with groundwater depth showed very low correlation. But the clustered patterns of vegetation cover were observed in the relationship with groundwater depth and soil moisture for both grasslands and croplands. The modeling of groundwater depth relative to soil moisture and MODIS NDVI of grasslands determined that the threshold of groundwater depth for vegetation growth is in the range of 1-5 m. MODIS NDVI and soil moisture did not reveal a significant correlation. Soil moisture revealed R2 equal to 0.34 with elevation, R2 equal to 0.23 with evapotranspiration, R2 equal to 0.57 with groundwater depth and R2 equal to 0.02 with precipitation. This allowed to suspect that precipitation is not the main factor controlling soil moisture whereas elevation, evapotranspiration and groundwater depth have non-direct control of soil moisture. Therefore, soil moisture has also non-direct control of vegetation cover growth along the corridor of pipelines. The variations of soil moisture in the 1-3 m soil depth range may have the threshold of depth controlling vegetation cover regrowth and this requires more detailed soil moisture data for further investigations. The reliability of the Global Spatial Regression Model and Geographically Weighted Regression predictions is limited by the MODIS images spatial resolution equal to 250 m and spectral characteristics. The Morgan-Morgan-Finney (MMF) and Universal Soil Loss Equation (USLE) predictions revealed non-similarity in the spatial distribution of soil loss rates along Right-of-Way. MMF model revealed more clustered patterns of predicted critical erosion classes with soil loss more than 10 ton/ha/year in particular ranges of pipelines rather than Universal Soil Loss Equation model with the widespread spatial distribution. Paired-Samples T-Test with p-value less than 0.05 and Bivariate correlation with the Pearson\'s correlation coefficient equal to 0.23 showed that the predictions of these two models were significantly different. Verification of USLE- and MMF- predicted erosion classes against in-situ 316 collected erosion occurrences collected in the period of 2005-2012 revealed that USLE performed better than MMF model along pipeline by identifying of 192 erosion occurrences out of 316, whereas MMF identified 117 erosion sites. USLE revealed higher ratio of frequencies of erosion occurrences within the critical erosion classes (Soil Loss > 10 t/ha), what also showed higher reliability of soil loss predictions by USLE. The validation of quantitative soil loss predictions using the measurements from 48 field erosion plots revealed higher R2 equal to 0.67 by USLE model than by MMF. This proved that USLE-predicted soil loss rates were more reliable than MMF not only in terms of spatial distributions of critical erosion classes but also in the quantitative terms of soil loss rates. The total number of erosion-prone pipeline segments with the identified erosion occurrences was 316 out of 38376. The number of erosion-prone pipeline segments realistically predicted by USLE model e.g. soil loss more than 10 t/ha was 97 whereas MMF predicted only 70 erosion-prone pipeline segments. The regression analysis between 354 USLE and MMF erosion-prone segments revealed R2 equal to 0.36 what means that the predictions by USLE and MMF erosion models are significantly different on the level of pipeline segments. The average coefficients of variation of predicted soil loss rates by USLE and MMF models and the number of accurately predicted erosion occurrences within the geomorphometric elements of terrain, vegetation cover and landuse categories were larger in the USLE model. This supported the hypothesis that larger spatial variations of erosion prediction models can contribute to the better soil loss prediction performance and reliability of erosion prediction models. This also supported the hypothesis that better understanding of spatial variations within geomorphometric elements of terrain, land-use and vegetation cover percentage classes can support in the selection of the appropriate erosion models with better performance in the particular areas of pipelines. Qualitative multi-criteria assessment for the determination of erosion-prone areas revealed stronger relations with the USLE predictions rather than with MMF. Multi-criteria assessment identified 35 of erosion occurrences but revealed more reliable predictions on the level of terrain units. Predicted erosion-prone areas by USLE revealed higher correlation coefficient with erosion occurrences than MMF model within terrain units what proved higher reliability of the USLE predictions and its stronger relation with the multi-criteria assessment.
7

Quantitative Assessment of Vegetation Renaturation and Soil Degradation and their Control by Climate and Ground Factors along Rights-of-Way of Petroleum/Gas Pipelines, Azerbaijan

Bayramov, Emil 17 January 2013 (has links)
The construction of Baku-Tbilisi-Ceyhan (BTC) Oil and South Caucasus Gas (SCP) pipelines was completed in 2005. The Azerbaijan section of BTC Oil and SCP Gas pipelines is 442 km long and 44 m wide corridor named as the Right-of-Way. BTC and SCP pipelines are aligned parallel to each other within the same 44m corridor. The construction process of the pipelines significantly disturbed vegetation and soil cover along Right-of-Way of pipelines. The revegetation and erosion control measures were conducted after the completion of construction to restore the disturbed footprints of construction activities. The general goals of the present studies, dedicated to the environmental monitoring of revegetation and planning of erosion control measures were: to evaluate the status of the revegetation in 2007 since the completion of the construction activities in 2005, to determine the climate and ground factors controlling the vegetation regrowth and to predict erosion-prone areas along Right-of-Way of pipelines. Regression and root mean square error analysis between the Normalized Difference Vegetation Index (NDVI) of IKONOS images acquired in 2007 and in-situ estimations of vegetation cover percentage revealed R2 equal to 0.80 and RMSE equal to 6% which were optimal for the normalization of NDVI to vegetation cover. The total area of restored vegetation cover between 2005 and 2007 was 8.9 million sq. m. An area of 10.7 million sq. m. of ground vegetation needed restoration in order to comply with the environmental acceptance criteria. Based on the Global Spatial Regression Model, precipitation, land surface temperature and evapotranspiration were determined as the main climate factors controlling NDVI of grasslands along Right-of-Way of pipelines. In case of croplands, precipitation, evapotranspiration and annual minimum temperature were determined as the main factors controlling NDVI of croplands. The regression models predicting NDVI for grasslands and croplands were also formulated. The Geographically Weighted Regression analyses in comparison with the global regression models results clearly revealed that the relationship between NDVI of grasslands and croplands and the predictor variables was spatially non-stationary along the corridor of pipelines. Even though the observed R2 value between elevation and NDVI of grasslands was low (R2= 0.14), the accumulation of the largest NDVI patterns was observed higher than 150m elevation. This revealed that elevation has non-direct control of NDVI of grasslands through its control of precipitation and temperature along the grasslands of Right-of-Way. The spatial distribution percentage of NDVI classes within slope aspect categories was decreasing in the southern directions of slope faces. Land surface temperature was decreasing with elevation but no particular patterns of land surface temperature in the relationship with NDVI accumulation within the aspect categories were observed. Aspect categories have non-direct control of NDVI and there are some other factors apart from land surface temperature which require further investigations. Precipitation was determined to be controlling the formation of topsoil depth and the topsoil obviously controls the VC growth of grasslands as one of the main ground factors. The regression analysis between NDVI of grasslands and croplands with groundwater depth showed very low correlation. But the clustered patterns of vegetation cover were observed in the relationship with groundwater depth and soil moisture for both grasslands and croplands. The modeling of groundwater depth relative to soil moisture and MODIS NDVI of grasslands determined that the threshold of groundwater depth for vegetation growth is in the range of 1-5 m. MODIS NDVI and soil moisture did not reveal a significant correlation. Soil moisture revealed R2 equal to 0.34 with elevation, R2 equal to 0.23 with evapotranspiration, R2 equal to 0.57 with groundwater depth and R2 equal to 0.02 with precipitation. This allowed to suspect that precipitation is not the main factor controlling soil moisture whereas elevation, evapotranspiration and groundwater depth have non-direct control of soil moisture. Therefore, soil moisture has also non-direct control of vegetation cover growth along the corridor of pipelines. The variations of soil moisture in the 1-3 m soil depth range may have the threshold of depth controlling vegetation cover regrowth and this requires more detailed soil moisture data for further investigations. The reliability of the Global Spatial Regression Model and Geographically Weighted Regression predictions is limited by the MODIS images spatial resolution equal to 250 m and spectral characteristics. The Morgan-Morgan-Finney (MMF) and Universal Soil Loss Equation (USLE) predictions revealed non-similarity in the spatial distribution of soil loss rates along Right-of-Way. MMF model revealed more clustered patterns of predicted critical erosion classes with soil loss more than 10 ton/ha/year in particular ranges of pipelines rather than Universal Soil Loss Equation model with the widespread spatial distribution. Paired-Samples T-Test with p-value less than 0.05 and Bivariate correlation with the Pearson\'s correlation coefficient equal to 0.23 showed that the predictions of these two models were significantly different. Verification of USLE- and MMF- predicted erosion classes against in-situ 316 collected erosion occurrences collected in the period of 2005-2012 revealed that USLE performed better than MMF model along pipeline by identifying of 192 erosion occurrences out of 316, whereas MMF identified 117 erosion sites. USLE revealed higher ratio of frequencies of erosion occurrences within the critical erosion classes (Soil Loss > 10 t/ha), what also showed higher reliability of soil loss predictions by USLE. The validation of quantitative soil loss predictions using the measurements from 48 field erosion plots revealed higher R2 equal to 0.67 by USLE model than by MMF. This proved that USLE-predicted soil loss rates were more reliable than MMF not only in terms of spatial distributions of critical erosion classes but also in the quantitative terms of soil loss rates. The total number of erosion-prone pipeline segments with the identified erosion occurrences was 316 out of 38376. The number of erosion-prone pipeline segments realistically predicted by USLE model e.g. soil loss more than 10 t/ha was 97 whereas MMF predicted only 70 erosion-prone pipeline segments. The regression analysis between 354 USLE and MMF erosion-prone segments revealed R2 equal to 0.36 what means that the predictions by USLE and MMF erosion models are significantly different on the level of pipeline segments. The average coefficients of variation of predicted soil loss rates by USLE and MMF models and the number of accurately predicted erosion occurrences within the geomorphometric elements of terrain, vegetation cover and landuse categories were larger in the USLE model. This supported the hypothesis that larger spatial variations of erosion prediction models can contribute to the better soil loss prediction performance and reliability of erosion prediction models. This also supported the hypothesis that better understanding of spatial variations within geomorphometric elements of terrain, land-use and vegetation cover percentage classes can support in the selection of the appropriate erosion models with better performance in the particular areas of pipelines. Qualitative multi-criteria assessment for the determination of erosion-prone areas revealed stronger relations with the USLE predictions rather than with MMF. Multi-criteria assessment identified 35 of erosion occurrences but revealed more reliable predictions on the level of terrain units. Predicted erosion-prone areas by USLE revealed higher correlation coefficient with erosion occurrences than MMF model within terrain units what proved higher reliability of the USLE predictions and its stronger relation with the multi-criteria assessment.
8

Der Einfluss von Mycophenolat-Mofetil (MMF) auf die renale Fibrogenese: Bedeutung für neue therapeutische Ansätze / The influence of mycophenolate mofetil on renal fibrogenesis: Relevance for new therapeutic approaches

Brehmer, Franziska 15 February 2011 (has links)
No description available.
9

Aktuální otázky činnosti Mezinárodního měnového fondu

Ševčíková, Ivana January 2007 (has links)
Mezinárodní měnový fond (MMF) je mezinárodní organizace o 185 členech, jejímž hlavním cílem je zajistit stabilitu mezinárodního měnového systému. Cílem této diplomové práce je přiblížit jejímu čtenáři, jaká je role Mezinárodního měnového fondu v současné světové ekonomice, jakým problémům musí čelit a s jakými výzvami se potýká. Práce nejprve představí okolnosti vzniku MMF, jeho cíle, výhody a povinnosti členů, jeho organizační strukturu a finanční zdroje. Následně přiblíží aktivity MMF včetně spolupráce se Světovou bankou a Světovou obchodní organizací. Pozornost je věnována i kritickým hlasům vně i uvnitř MMF, které jej přinutily k reformám v rámci programu Medium Term Strategy, jímž se zabývá poslední kapitola této práce.
10

Reforma Mezinárodního měnového fondu v souvislosti s vývojem světové ekonomiky / Reform of the International Monetary Fund in connection with the Development of the World Economy

Rábová, Anna January 2010 (has links)
This thesis deals with the development of the International Monetary Fund from its establishment to the present in connection with the changing reality in the world economy and with its reform in the new millennium that was caused by the unsuitable form of this institution considering the current situation in the world economy. In the third part it deals with the development of this reform in connection with the last financial crisis and with the impact of this crisis on the International Monetary Fund.

Page generated in 0.0746 seconds